BGS08 ${ }^{\text {TM }}$ Linear Rail with Hybrid 57000 Series Size 23 Single and Double Stacks

This BGS ${ }^{\text {TM }}$ heavy-duty linear rail combines many technologies into a single integrated linear motion platform. The lead screw drives a machined aluminum carriage mounted to a precision stainless steel ball slide resulting in a rigid, smooth-operating motion system.

Technical specifications for Size 23 Hybrid Linear Actuator Stepper Motors are on page 3.

BGS08 Size 23 Double Stack

BGS08
Specifications

BGS08 with Hybrid Linear Actuator Motor...	Size 23 Single Stack Size 23 Double Stack
Max. Stroke Length	$30-\mathrm{in}(760 \mathrm{~mm})$
Max. Load (Horizontal)**	$225 \mathrm{lbs}(1,000 \mathrm{~N})$
Roll Moment	$22.50 \mathrm{lbs}-\mathrm{ft}(30.5 \mathrm{Nm})$
Pitch Moment	$19.36 \mathrm{lbs}-\mathrm{ft}(26.25 \mathrm{Nm})$
Yaw Moment	$22.27 \mathrm{lbs}-\mathrm{ft}(30.20 \mathrm{Nm})$

| $\begin{array}{c}\text { Nominal } \\ \text { Thread } \\ \text { inches }\end{array}$ | | mm |
:---:	:---:	:---:	$)$	Lead	
Code	$	$	0.098	2.50	$\mathbf{0 0 9 8}$
:---	:---	:---			
0.100	2.54	$\mathbf{0 1 0 0}$			
0.197	5.00	$\mathbf{0 1 9 7}$			
0.200	5.08	$\mathbf{0 2 0 0}$			
0.500	12.70	$\mathbf{0 5 0 0}$			
0.630	16.00	$\mathbf{0 6 3 0}$			
1.000	25.40	$\mathbf{1 0 0 0}$			

** To determine what is best for your application see the Linear Rail Applications Checklist on page 5.

Identifying the Motorized BGS part number codes when ordering

ADVANCED MOTION SOLUTIONS
BGSTM Motorized Linear Railst
BGS08
Dimensional Drawings

BGS08 ${ }^{\text {TM }}$ Linear Rail with Hybrid 57000 Size 23 linear motors are recommended for horizontal loads up to 225 lbs (1,000 N)

	A	B	C	D	E	F	G	H	I	J	K	L	Z1	Z2	Z3
(inch)	(2.70)	(1.75)	(1.00)	(1.60)	(0.98)	(1.25)	(1.50)	(1.25)	*	(1.79)	(1.29)	(1.60)	(0.20)	(0.33)	(0.19)
mm	68.58	44.45	25.40	40.64	24.89	31.75	38.10	31.75	*	45.39	32.69	40.64	5.1	8.4	4.8

* Dimension "l" is a function of required travel distance.

Dimensions $=$ (inches) mm

Specifications: Haydon ${ }^{\circledR} 57000$ Series Size 23 Single Stack

Size 23: 57 mm (2.3-in) Hybrid Linear Actuator (1.8 ${ }^{\circ}$ Step Angle)					
Wiring	Bipolar			Unipola**	
Winding Voltage	3.25 VDC	5 VDC	12 VDC	5 VDC	12 VDC
Current (RMS)/phase	2.0 A	1.3 A	. 54 A	1.3 A	. 54 A
Resistance/phase	1.63Ω	3.85Ω	22.2Ω	3.85Ω	22.2Ω
Inductance/phase	3.5 mH	10.5 mH	58 mH	5.3 mH	23.6 mH
Power Consumption	13 W				
Rotor Inertia	166 gcm ${ }^{2}$				
Insulation Class	Class B (Class F available)				
Weight	18 oz (511 g)				
Insulation Resistance	$20 \mathrm{M} \Omega$				

** Unipolar drive gives approximately 30% less thrust than bipolar drive.

Size 23
Single Stack External Linear

Specifications: Haydon ${ }^{\circledR} 57000$ Series Size 23 Double Stack

Size 23: Linear Actuator (1.8 (1. ${ }^{\circ}$ Step Angle)			
Wiring	Bipolar		
Winding Voltage	3.25 VDC	5 VDC	12 VDC
Current (RMS)/phase	3.85 A	2.5 A	1 A
Resistance/phase	0.98Ω	2.0Ω	12.0Ω
Inductance/phase	2.3 mH	7.6 mH	35.0 mH
Power Consumption	25 W Total		
Rotor Inertia	$332 \mathrm{gcm}{ }^{2}$		
Insulation Class	Class B (Class F available)		
Weight	$32 \mathrm{oz}(958 \mathrm{~g})$		
Insulation Resistance	$20 \mathrm{M} \Omega$		

Size 23
Double Stack External Linear

Performance Curves: Haydon ${ }^{\circledR} 57000$ Series Size 23 Single Stack

FORCE vs, PULSE RATE
Chopper • Bipolar • 100\% Duty Cycle

FORCE vs, LINEAR VELOCITY
Chopper • Bipolar • 100\% Duty Cycle

Performance Curves: Haydon ${ }^{\circledR} 57000$ Series Size 23 Double Stack

FORCE vs, PULSE RATE
Chopper • Bipolar • 100\% Duty Cycle

FORCE vs, LINEAR VELOCITY
Chopper • Bipolar • 100\% Duty Cycle

NOTE: All chopper drive curves were created with a 5 volt motor and a 75 volt power supply.
Ramping can increase the performance of a motor either by increasing the top speed or getting a heavier load accelerated up to speed faster. Also, deceleration can be used to stop the motor without overshoot.

With L/R drives peak force and speeds are reduced, using a unipolar drive will yield a further 30% force reduction.

The Haydon ${ }^{\circledR} 57000$ Series

Size 23
Hybrids: Stepping Sequence

	Bipolar	Q2-Q3	Q1-Q4	Q6-Q7
Q5-Q8				
	Unipolar	Q1	Q2	Q3

Note: Half stepping is accomplished by inserting an off state between transitioning phases.

Hybrids: Wiring

BIPOLAR
UNIPOLAR

-

Information needed to properly size a linear rail system

Haydon Kerk ${ }^{\text {TM }}$ Linear Rail Systems are designed to be precision motion devices. Many variables must be considered before applying a particular rail system in an application. The following is a basic checklist of information needed that will make it easier for the Haydon Kerk engineering team to assist you in choosing the proper linear rail.

Linear Rail Application Checklist

1) Maximum Load? \qquad (N or lbs.)
2) Load Center of Gravity (cg) Distance and Height (mm or inches)? See illustrations (A) (B) (C) below. Dimensions ($\square \mathrm{mm} / \square$ inch):

- (A) \qquad ... OR... (B) \qquad AND... \square (C) \qquad

3) Rail Mount Orientation? The force needed to move the load is dependent on the orientation of the load relative to the force of gravity. For example, total required force in the horizontal plane (D) is a function of friction and the force needed for load acceleration ($F_{f}+F_{a}$). Total force in the vertical plane is a function of friction, load acceleration, and gravity ($F_{f}+F_{a}+F_{g}$).

Orientation: $\square(D)$
\square (E) \qquad。
\square (F)
$\square(G)$
$\square(H)$ \qquad \sim°

Linear Rail Application Checklist (Continued)

4) Stroke Length to Move Load? \qquad (mm or inches)
Overall rail size will be a function of stroke length needed to move the load, the rail frame size (load capability), the motor size, and whether or not an integrated stepper motor programmable drive system is added.

5) Move Profile?

A trapezoidal move profile divided into 3 equal segments (J) is a common move profile and easy to work with. Another common move profile is a triangular profile divided into 2 equal segments (K).

If using a trapezoidal (J) or triangular (K) move profile, the following is needed...
a) Point to point move distance \qquad (mm or inches)
b) Move time \qquad (seconds) including time of acceleration and deceleration
c) Dwell time between moves \qquad (seconds)

The trapezoidal move profile (J) is a good starting point in helping to size a system for prototype work.
A complex move profile (L) requires more information.
a) Time (in seconds) including: $T_{1}, T_{2}, T_{3}, T_{4}, T_{5} \ldots T_{n}$ and $T_{\text {dwell }}$
b) Acceleration / Deceleration (mm/sec. ${ }^{2}$ or inches $/ \mathrm{sec} .^{2}$) including: $A_{1}, A_{2}, A_{3} \ldots A_{n}$

For more information call Haydon Kerk Motion Solutions Engineering at 2037567441.

Linear Rail Application Checklist (Continued)
6) Position Accuracy Required? \qquad (mm or inches)
Accuracy is defined as the difference between the theoretical position and actual position capability of the system. Due to manufacturing tolerances in components, actual travel will be slightly different than theoretical "commanded" position. See figure (M) below.
7) Position Repeatability Required? \qquad (mm or inches)
Repeatability is defined as the range of positions attained when the rail is commanded to approach the same position multiple times under identical conditions. See figure (M) below.

8) Positioning Resolution Required? \qquad (mm/step or inches/step)
Positioning resolution is the smallest move command that the system can generate. The resolution is a function of many factors including the drive electronics, lead screw pitch, and encoder (if required). The terms "resolution" and "accuracy" should never be used interchangeably.
9) Closed-Loop Position Correction Required? YES NO

In stepper motor-based linear rail systems, position correction is typically accomplished using a rotary incremental encoder (either optical or magnetic).
10) Life Requirement? (select the most important application parameter)
a) Total mm or inches \qquad
... or ... b) Number of Full Strokes
... or ... c) Number of Cycles \qquad
11) Operating Temperature Range \qquad (${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$)
a) Will the system operate in an environment in which the worst case temperature is above room temperature?
b) Will the system be mounted in an enclosure with other equipment generating heat?
12) Controller / Drive Information?
a) Haydon Kerk IDEA ${ }^{\text {TM }}$ Drive (with Size 17 Stepper Motors only)
b) Customer Supplied Drive... Type? Chopper Drive L / R Drive Model / Style of Drive: \qquad
13) Power Supply Voltage? \qquad (VDC)
14)* Step Resolution?
a) Full Step
b) Half-Step
c) Micro-Step
15)* Drive Current? \qquad ($\mathrm{A}_{\text {rms }}$ / Phase) and \qquad (A peak $/$ Phase)
16)

Current Boost Capability? \qquad (\%)

* If the Haydon Kerk IDEA ${ }^{\text {TM }}$ Drive is used disregard items 14, 15, and 16.

