

Z26000 Series Ø 26 mm (1-in) Can-Stack Stepper Motor Linear Actuators

Designed to accommodate high volume applications

Z26000 Series motors utilize rare earth (neodymium) magnets. Also, available in a special "earless" configuration without a mounting flange. All units are built with durable dual ball bearings.

Multiple versions available

- Captive - Non-Captive - External Linear

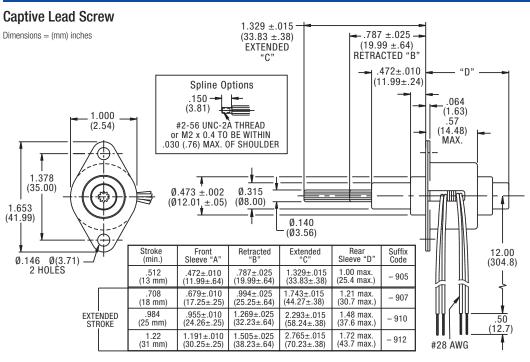
Specifications

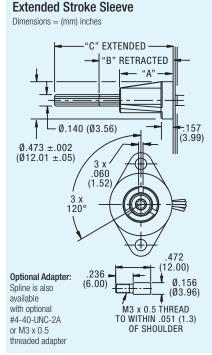
Specifications										
Ø 26 mm (1-in) Z-Series Motor										
	Captive	Z2644 –	†	Z2654 –	†	Z2646 –	†	Z2656 –	†	
Part No.	Non-Captive	Z2634 –	- †	Z2684 –	†	Z2636 –	_ †	Z2686 –	†	
	External Linear*	Z2644 –	Z2644 – 9 †**		Z2654 - 9 - †**		Z2646 - 9 - †**		Z2656 - 9 - †**	
	Wiring	Bipolar				Unipolar*				
:	Step angle	7.5°		15°		7.5°		15°		
Winding Voltage		5 VDC	12 VDC	5 VDC	12 VDC	5 VDC	12 VDC	5 VDC	12 VDC	
Current (RMS)/phase		340 mA	140 mA	340 mA	140 mA	340 mA	140 mA	340 mA	140 mA	
Resistance/phase		14.7 Ω	84 Ω	14.7 Ω	84 Ω	14.7 Ω	84 Ω	14.7 Ω	84 Ω	
Inductance/phase		8.5 mH	55 mH	6.7 mH	44 mH	4.3 mH	24 mH	3.4 mH	19 mH	
Powe	er Consumption	3.4 W								
R	Rotor Inertia	tor Inertia 1.4 gcm ²								
Ins	sulation Class	Class B								
	Weight	1.2 oz (34 g)								
Insula	ation Resistance	20 ΜΩ								

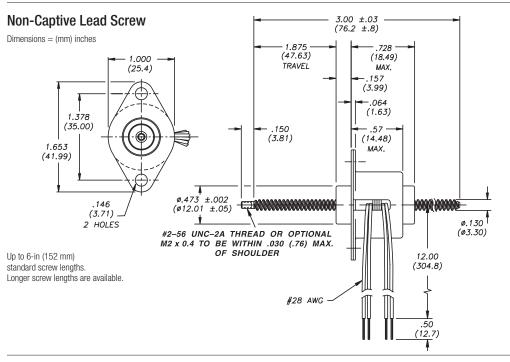
*Part numbering information on page 4. *Unipolar drive gives approximately 40% less thrust compared to bipolar drive. ** When ordering Z-Series External Linear motors, add —900 to end of the Part Number.

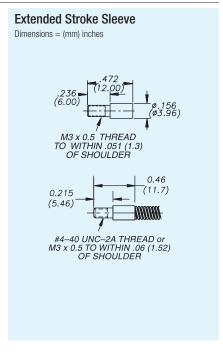
	Linear Travel / Step 15° Step Angle						
step	inches mm		Code I.D.				
	0.0005	0.013	3				
7.5° Angle	0.001	0.0254	1				
7 tilgio	0.002	0.051	2				
	0.00164	0.04166	AS				
15° Angle	0.002	0.051	2				
/ wigio	0.004	0.102	4				

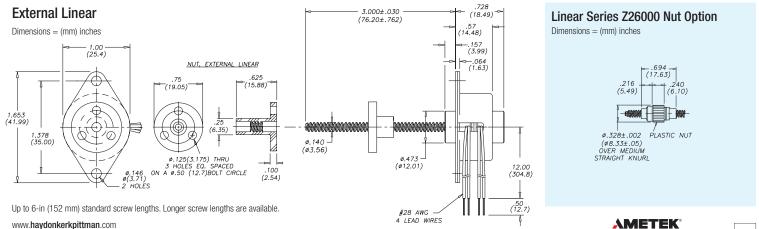
Special drive considerations may be necessary when leaving shaft fully extended or fully retracted. Standard motors are Class B rated for maximum temperature of 130° C (266° F).

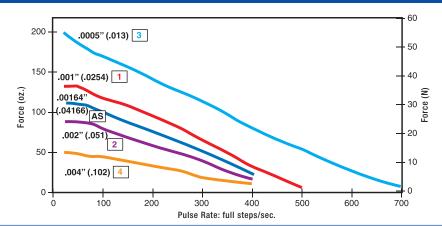

Also available, specially engineered Z26000 (Ø 26 mm, 1-in) linear actuators that extend captive lead screw travel beyond 12.7 mm (1/2-in).




1

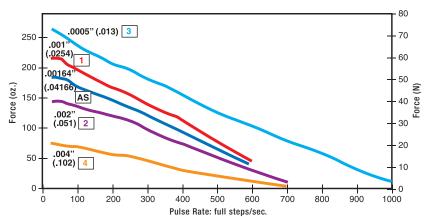

www.haydonkerkpittman.com


Z26000 Series • Can-Stack Stepper Motor Linear Actuators

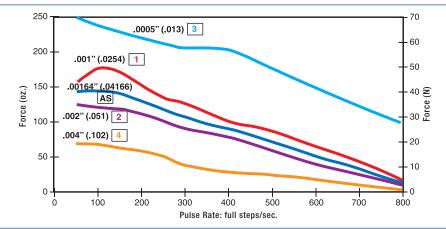


Z26000 Series • Can-Stack Stepper Motor Linear Actuators

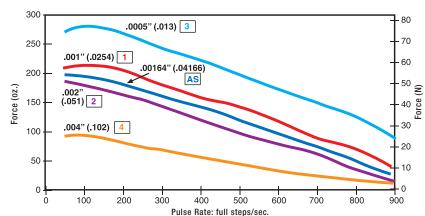
FORCE vs. PULSE RATE


- L/R Drive
- Bipolar
- 100% Duty Cycle

FORCE vs. PULSE RATE


- L/R Drive
- Bipolar
- 25% Duty Cycle

Obtained by a special winding or by running a standard motor at double the rated current.

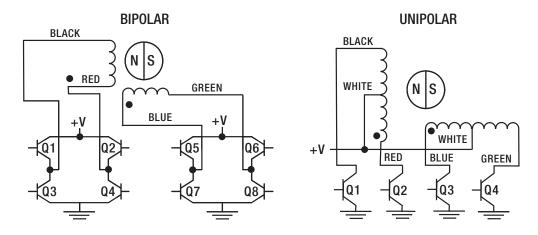

FORCE vs. PULSE RATE

- Chopper Drive
- Bipolar
- 100% Duty Cycle

FORCE vs. PULSE RATE

- Chopper Drive
- Bipolar
- 25% Duty Cycle

NOTE: All chopper drive curves were created with a 5 volt motor and a 40 volt power supply.


Ramping can increase the performance of a motor either by increasing the top speed or getting a heavier load accelerated up to speed faster. Also, deceleration can be used to stop the motor without overshoot.

www.haydonkerkpittman.com

Identifying the Can-Stack Number Codes when Ordering

Z	26	4	4	2	05	900	
Prefix Z = Series Code	Series Number Designation 26 = 26000 (Series numbers represent approximate diameters of motor body)	Style 3 = 7.5° Non-Captive 4 = 7.5° Captive or External (use "E" or "K" Prefix for External version) 5 = 15° Captive or External (use "E" or "K" Prefix for External version 8 = 15° Non-Captive	Coils 4 = Bipolar (4 wire) 6 = Unipolar (6 wire)	Code ID Resolution Travel/Step 1 = .001-in (.0254) 2 = .002-in (.051) 3 = .0005-in (.013) 4 = .004-in (.102) AS = .04166-in (.00164)	Voltage 05 = 5 VDC 12 = 12 VDC Custom V available	Suffix Stroke Example: -900 used to code Z-Series external linear -XXX = Proprietary suffix assigned to a specific customer application. The identifier can apply to either a standard or custom part.	
NOTE: Dashes must be included in Part Number (—) as shown above. For assistance call our Engineering Team at 203 756 7441.							

Can-Stacks: Wiring

Can-Stacks: Stepping Sequence

EXTEND CW ——•	Bipolar	Q2-Q3	Q1-Q4	Q6-Q7	Q5-Q8	
	Step					Ī
	1	ON	OFF	ON	OFF	 ≥
	2	OFF	ON	ON	OFF	CCW
	3	OFF	ON	OFF	ON	RACT
	4	ON	OFF	OFF	ON	RFF
	1	ON	OFF	ON	OFF] _

 $\label{thm:local_equation} \mbox{Note: Half stepping is accomplished by inserting an off state between transitioning phases.}$

www.haydonkerkpittman.com