

Haydon[®] 37000 Series – exceptionally high linear force-to-size ratio, ideal for precision motion.

Haydon kerk

Outstanding durability and high performance. The G4 Series features high energy neodymium magnets and dual ball bearings.

Ø37mm (1.4-in) Non-captive

Specifications

Ø 36 mm (1.4-in) motor								
Wiring		Bipolar						
Part No.	Captive	3744 – – – – – †		3754 🗖 –	- +			
	Non-captive	3734 – – – †		3784 +				
	External	E3744 – – – †		E3754 +				
Step angle		7.5°		15°				
Winding voltage		5 VDC	12 VDC	5 VDC	12 VDC			
Current (RMS)/phase		561 mA	230 mA	561 mA	230 mA			
Resistance/phase		8.9 Ω	52 Ω	8.9 Ω	52 Ω			
Inductance/phase		11.6 mH	65 mH	8.5 mH	46 mH			
Rotor inertia		8.5 gcm ²						
Power consumption		5.6 W						
Insulation Class		Class B						
Weight		4.2 oz (49 g)						
Insulation resistance		20 MΩ						

Ø37mm (1.4-in) External Linear

> Ø37mm (1.4-in) Captive

Line	Order Code			
Step	inches	mm	I.D.	
	0.0005	0.013	3	
7.5° Angle	0.001	0.0254	1	
	0.002	0.051	2	
	0.001	0.0254	1	
15° Angle	0.002	0.051	2	
	0.004	0.102	4	

Special drive considerations may be necessary when leaving shaft fully extended or fully retracted.

Standard motors are Class B rated for maximum temperature of 130° C (266° F).

Non-Captive Lead-screw

Haydon kerk

External Linear

Dimensions = (mm) inches

Longer screw lengths are available.

Connector

G4 37000 Series: Ø 36 mm (1.4-in) Can-Stack Performance Curves

FORCE vs. PULSE RATE

L/R Drive • Bipolar 100% Duty Cycle

FORCE vs. PULSE RATE

L/R Drive • Bipolar 25% Duty Cycle

Obtained by a special winding or by running a standard motor at double the rated current.

400

500

Pulse Rate: full steps/sec.

600

800

700

FORCE vs. PULSE RATE

Chopper Drive • Bipolar 100% Duty Cycle

FORCE vs. PULSE RATE

Chopper Drive • Bipolar

25% Duty Cycle

Obtained by a special winding or by running a standard motor at double the rated current.

NOTE: All chopper drive curves were created with a 5 volt motor and a 40 volt power supply.

Ramping can increase the performance of a motor either by increasing the top speed or getting a heavier load accelerated up to speed faster. Also, deceleration can be used to stop the motor without overshoot.

200

300

100

ADVANCED MOTION SOLUTIONS

Can-Stack Motors: Part Number Identification Wiring & Step Sequence

Identifying the Can-Stack part number codes when ordering

Maydon kerk

Can-Stacks: Stepping Sequence

EXTEND CW →	Bipolar	Q2-Q3	Q1-Q4	Q6-Q7	Q5-Q8	1
	Step					3
	1	ON	OFF	ON	OFF	Ö
	2	OFF	ON	ON	OFF	
	3	OFF	ON	OFF	ON	M S
	4	ON	OFF	OFF	ON	
	1	ON	OFF	ON	OFF	

Note: Half stepping is accomplished by inserting an off state between transitioning phases.