Dual Motion

Size 17 Linear/Rotary Actuators

Provide linear and rotary motions, controllable independently of one another.
For a rotary/linear motor, it is desirable that the linear and rotary motions be controllable independently of one another. These devices can be run using a standard two axis stepper motor driver. Performance can be enhanced using chopper and/or microstepping drives.

The actuators are based on unique, patented designs and incorporate proven motor technology. These units simplify product development by replacing what would otherwise be far more bulky and complex mechanisms.

Identifying the Series 43000 Series Dual Motion Part Number Codes when Ordering

LR	43	H	H	4		J	05	910
Prefix $\mathrm{LR}=$ Linear/Rotary	Series Number Designation $43=43000$	Rotary Step Angle $H=1.8^{\circ}$ $\mathrm{K}=0.9^{\circ}$ $M=1.8^{\circ}$ Double Stack $\mathbf{P}=0.9^{\circ}$ Double Stack	Linear Step Angle $\begin{aligned} & \mathrm{H}=1.8^{\circ} \\ & \mathrm{K}=0.9^{\circ} \end{aligned}$	Coils 4 = Bipolar (4 wire) $6=$ Unipolar (6 wire)	$\begin{aligned} & \hline 1.8^{\circ} \text { Step Angle } \\ & \text { Code ID Resolution } \\ & \text { Travel/Step } \\ & \mathrm{N}=.00012-\mathrm{in}(.003) \\ & 7=.000125-\mathrm{in}(.0031) \\ & \mathrm{P}=.00015625-\mathrm{in}(.0039) \\ & \mathrm{AB}=.00019-\mathrm{in}(.005) \\ & \mathrm{K}=.00024-\mathrm{in}(.006) \\ & 9=.00025-\mathrm{in}(.0063) \\ & \mathrm{A}=.0003125-\mathrm{in}(.0079) \\ & \mathrm{AC}=.00039-\mathrm{in}(.01) \\ & \mathrm{J}=.00048-\mathrm{in}(.0121) \\ & 3=.0005-\mathrm{in}(.0127) \\ & \mathrm{B}=.000625-\mathrm{in}(.0158) \\ & \mathrm{AQ}=.00098-\mathrm{in}(.025) \\ & \mathbf{Q}=.00096-\mathrm{in}(.0243) \\ & \mathrm{C}=0.00125-\mathrm{in}(.0317) \\ & \mathrm{BH}=.00196-\mathrm{in}(.05) \\ & \mathrm{R}=0.00192-\mathrm{in}(.0487) \\ & \mathrm{Y}=.0025-\mathrm{in}(.0635) \\ & \mathrm{AG}=.00375-\mathrm{in}(.0953) \\ & \mathrm{Z}=.005-\mathrm{in}(.127) \end{aligned}$		Voltage $05=$ 5 VDC $12=$ 12 VDC $\mathrm{SP}=$ Mixed Voltages Custom V available	Suffix Stroke Example: $-910=1-\mathrm{in}$ (26 mm) $-\mathrm{XXX}=$ Proprietary suffix assigned to a specific customer application. The identifier can apply to either a standard or custom part.

[^0]See 43000 Series Hybrid Linear Data Sheet for More Detailed Motor Information.

43000 Series: $1.8{ }^{\circ}$ Step Angle					43000 Series: 0.9° Step Angle				
Linear Travel / Step		Load Limit		Order Code I.D.	Linear Travel / Step		Load Limit		Order Code I.D.
inches	mm	lbs	N		inches	mm	lbs	N	
0.00012	0.003*	30	133	N	0.00006	0.0015*	30	133	U
0.000125	0.0031*	30	133	7	0.0000625	0.0016^{*}	30	133	BB
0.00015625	0.0039*	30	133	P	0.00007825	0.00198*	30	133	V
$0.00019 *$	0.005	30	133	AB	0.000098*	0.0025	30	133	AA
0.00024	0.0060*	30	133	K	0.00012	0.003 *	30	133	N
0.00025	0.0063*	30	133	9	0.000125	0.0031*	30	133	7
0.0003125	0.0079*	50	222	A	0.00015625	0.0039*	50	222	P
0.00039*	0.01	50	222	AC	0.00019*	0.005	50	222	AB
0.00048	0.0121*	50	222	J	0.00024	0.0060*	50	222	K
0.0005	0.0127*	50	222	3	0.00025	0.0063*	50	222	9
0.000625	0.0158*	50	222	B	0.0003125	0.0079*	50	222	A
$0.00098 *$	0.025	50	222	AQ	$0.00049 *$	0.0125	50	222	BG
0.00096	0.0243*	50	222	Q	0.00048	0.0121*	50	222	J
0.00125	0.0317*	50	222	C	0.000625	0.0158*	50	222	B
$0.00196 *$	0.05	50	222	BH	$0.00098 *$	0.025	50	222	AQ
0.00192	0.0487*	50	222	R	0.00096	0.0243^{*}	50	222	Q
0.0025	0.0635	50	222	Y	0.00125	0.0317^{*}	50	222	C
0.00375	0.0953*	50	222	AG	0.001875	$0.0476{ }^{*}$	50	222	AF
0.005	0.127	50	222	Z	0.0025	0.0635	50	222	Y

*Values truncated. Standard motors are Class B rated for maximum temperature of $130^{\circ} \mathrm{C}$.
*Values truncated. Standard motors are Class B rated for maximum temperature of $130^{\circ} \mathrm{C}$.

Dimensions $=(\mathrm{mm})$ inches

Stroke	Dim. "A"	Suffix \#	M4x0.7 Thread
$0.500(12.7)$	$3.9(99.3)$	-905	-805
$1.00(25.4)$	$4.409(112.0)$	-910	-810
$2.00(50.8)$	$5.409(137.4)$	-920	-820
$4.00(101.6)$	$7.409(188.2)$	-925	-825

Standard strokes available:
1-in. (26 mm), 2-in. (51 mm) and 4-in. (102 mm).
Customized strokes available to 6 -in. (152 mm)

TORQUE vs. PULSE RATE: ROTARY FUNCTION

- Bipolar
- 100\% Duty Cycle

FORCE vs. PULSE RATE: LINEAR FUNCTION

- Chopper
- Bipolar
- 100\% Duty Cycle
- 8:1 Motor Coil to Drive Supply Voltage

FORCE vs. LINEAR VELOCITY

- Chopper
- Bipolar
- 100\% Duty Cycle
- 8:1 Motor Coil to Drive Supply Voltage

NOTE: All chopper drive curves were created with a 5 volt motor and a 40 volt power supply.
Ramping can increase the performance of a motor either by increasing the top speed
or getting a heavier load accelerated up to speed faster. Also, deceleration can be used to stop the motor without overshoot.

With L / R drives peak force and speeds are reduced, using a unipolar drive will yield a further 30% force reduction.

[^0]: NOTE: Dashes must be included in Part Number (-) as shown above. For assistance call our Engineering Team at 2037567441

