

1

# Dual Motion Size 17 Linear/Rotary Actuators

### Provide linear and rotary motions, controllable independently of one another.

For a rotary/linear motor, it is desirable that the linear and rotary motions be controllable independently of one another. These devices can be run using a standard two axis stepper motor driver. Performance can be enhanced using chopper and/or microstepping drives.

The actuators are based on unique, patented designs and incorporate proven motor technology. These units simplify product development by replacing what would otherwise be far more bulky and complex mechanisms.



### Identifying the Series 43000 Series Dual Motion Part Number Codes when Ordering

| LR            | 43                    | Н                                      | Н                          | 4                    | J                                           |                                   | 05                   | _ | 910                              |
|---------------|-----------------------|----------------------------------------|----------------------------|----------------------|---------------------------------------------|-----------------------------------|----------------------|---|----------------------------------|
| Prefix        | Series                | Rotary Step                            | Linear                     | Coils                | 1.8° Step Angle                             | 0.9° Step Angle                   | Voltage              |   | Suffix                           |
| LR =          | Number<br>Designation | Angle                                  | Step<br>Angle              | 4 =                  | Code ID Resolution<br>Travel/Step           | Code ID Resolution<br>Travel/Step | 05 =                 |   | Stroke                           |
| Linear/Rotary | <b>43</b> = 43000     | $H = 1.8^{\circ}$<br>$K = 0.9^{\circ}$ | H = 1.8°                   | Bipolar<br>(4 wire)  | <b>N</b> = .00012-in (.003)                 | <b>U</b> = .00006-in (.0015)      | 5 VDC<br><b>12</b> = |   | Example:<br>-910 = 1-in          |
|               |                       | <b>M</b> = 1.8°                        | $\mathbf{K} = 0.9^{\circ}$ | 6 =                  | <b>7</b> = .000125-in (.0031)               | <b>BB</b> = .0000625-in (.0016)   | 12 VDC               |   | (26 mm)                          |
|               |                       | Double                                 |                            | Unipolar<br>(6 wire) | $\mathbf{P} = .00015625 \text{-in} (.0039)$ | <b>V</b> = .00007825-in (.00198)  | SP =                 |   | -XXX =                           |
|               |                       | Stack                                  |                            | (o wire)             | AB = .00019 - in (.005)                     | <b>AA</b> = .000098-in (.0025)    | Mixed Voltages       |   | Proprietary suffix assigned to a |
|               |                       | <b>P</b> = 0.9°<br>Double              |                            |                      | <b>K</b> = .00024-in (.006)                 | <b>N</b> = .00012-in (.003)       | Custom V             |   | specific customer                |
|               |                       | Stack                                  |                            |                      | <b>9</b> = .00025-in (.0063)                | <b>7</b> = .000125-in (.0031)     | available            |   | application.                     |
|               |                       |                                        |                            |                      | <b>A</b> = .0003125-in (.0079)              | <b>P</b> = .00015625-in (.0039)   |                      |   | The identifier can               |
|               |                       |                                        |                            |                      | AC = .00039 - in (.01)                      | <b>AB</b> = .00019-in (.005)      |                      |   | apply to either a standard or    |
|               |                       |                                        |                            |                      | J = .00048-in (.0121)                       | <b>K</b> = .00024-in (.006)       |                      |   | custom part.                     |
|               |                       |                                        |                            |                      | <b>3</b> = .0005-in (.0127)                 | <b>9</b> = .00025-in (.0063)      |                      |   |                                  |
|               |                       |                                        |                            |                      | $\mathbf{B} = .000625 \text{-in} (.0158)$   | <b>A</b> = .0003125-in (.0079)    |                      |   |                                  |
|               |                       |                                        |                            |                      | AQ = .00098-in (.025)                       | <b>BG</b> = .00049-in (.0125)     |                      |   |                                  |
|               |                       |                                        |                            |                      | <b>Q</b> = .00096-in (.0243)                | <b>J</b> = .00048-in (.0121)      |                      |   |                                  |
|               |                       |                                        |                            |                      | <b>C</b> = 0.00125-in (.0317)               | <b>B</b> = .000625-in (.0158)     |                      |   |                                  |
|               |                       |                                        |                            |                      | BH = .00196-in (.05)                        | <b>AQ</b> = .00098-in (.025)      |                      |   |                                  |
|               |                       |                                        |                            |                      | $\mathbf{R} = 0.00192 \text{-in} (.0487)$   | <b>Q</b> = .00096-in (.0243)      |                      |   |                                  |
|               |                       |                                        |                            |                      | <b>Y</b> = .0025-in (.0635)                 | <b>C</b> = .00125-in (.0317)      |                      |   |                                  |
|               |                       |                                        |                            |                      | AG = .00375 - in (.0953)                    | <b>AF</b> = .001875-in (.0476)    |                      |   |                                  |
|               |                       |                                        |                            |                      | <b>Z</b> = .005-in (.127)                   | <b>Y</b> = .0025-in (.0635)       |                      |   |                                  |

NOTE: Dashes must be included in Part Number (-) as shown above. For assistance call our Engineering Team at 203 756 7441.

See 43000 Series Hybrid Linear Data Sheet for More Detailed Motor Information.

www.haydonkerkpittman.com

| 43000 Series: 1.8° Step Angle |            |      |       |                 |  |
|-------------------------------|------------|------|-------|-----------------|--|
| Linear Tra                    | vel / Step | Load | Limit | Order Code I.D. |  |
| inches                        | mm         | lbs  | N     | Older Gode I.D. |  |
| 0.00012                       | 0.003*     | 30   | 133   | N               |  |
| 0.000125                      | 0.0031*    | 30   | 133   | 7               |  |
| 0.00015625                    | 0.0039*    | 30   | 133   | Р               |  |
| 0.00019*                      | 0.005      | 30   | 133   | AB              |  |
| 0.00024                       | 0.0060*    | 30   | 133   | K               |  |
| 0.00025                       | 0.0063*    | 30   | 133   | 9               |  |
| 0.0003125                     | 0.0079*    | 50   | 222   | А               |  |
| 0.00039*                      | 0.01       | 50   | 222   | AC              |  |
| 0.00048                       | 0.0121*    | 50   | 222   | J               |  |
| 0.0005                        | 0.0127*    | 50   | 222   | 3               |  |
| 0.000625                      | 0.0158*    | 50   | 222   | В               |  |
| 0.00098*                      | 0.025      | 50   | 222   | AQ              |  |
| 0.00096                       | 0.0243*    | 50   | 222   | Q               |  |
| 0.00125                       | 0.0317*    | 50   | 222   | С               |  |
| 0.00196*                      | 0.05       | 50   | 222   | ВН              |  |
| 0.00192                       | 0.0487*    | 50   | 222   | R               |  |
| 0.0025                        | 0.0635     | 50   | 222   | Υ               |  |
| 0.00375                       | 0.0953*    | 50   | 222   | AG              |  |
| 0.005                         | 0.127      | 50   | 222   | Z               |  |

| 43000 Series: 0.9° Step Angle |            |      |       |                 |  |
|-------------------------------|------------|------|-------|-----------------|--|
| Linear Tra                    | vel / Step | Load | Limit | Order Code I.D. |  |
| inches                        | mm         | lbs  | N     | Order Gode I.D. |  |
| 0.00006                       | 0.0015*    | 30   | 133   | U               |  |
| 0.0000625                     | 0.0016*    | 30   | 133   | BB              |  |
| 0.00007825                    | 0.00198*   | 30   | 133   | V               |  |
| 0.000098*                     | 0.0025     | 30   | 133   | AA              |  |
| 0.00012                       | 0.003*     | 30   | 133   | N               |  |
| 0.000125                      | 0.0031*    | 30   | 133   | 7               |  |
| 0.00015625                    | 0.0039*    | 50   | 222   | Р               |  |
| 0.00019*                      | 0.005      | 50   | 222   | AB              |  |
| 0.00024                       | 0.0060*    | 50   | 222   | K               |  |
| 0.00025                       | 0.0063*    | 50   | 222   | 9               |  |
| 0.0003125                     | 0.0079*    | 50   | 222   | А               |  |
| 0.00049*                      | 0.0125     | 50   | 222   | BG              |  |
| 0.00048                       | 0.0121*    | 50   | 222   | J               |  |
| 0.000625                      | 0.0158*    | 50   | 222   | В               |  |
| 0.00098*                      | 0.025      | 50   | 222   | AQ              |  |
| 0.00096                       | 0.0243*    | 50   | 222   | Q               |  |
| 0.00125                       | 0.0317*    | 50   | 222   | С               |  |
| 0.001875                      | 0.0476*    | 50   | 222   | AF              |  |
| 0.0025                        | 0.0635     | 50   | 222   | Υ               |  |

2

Dimensions = (mm) inches



| Stroke       | Dim. "A"      | Suffix # | M4x0.7 Thread |  |
|--------------|---------------|----------|---------------|--|
| 0.500 (12.7) | 3.9 (99.3)    | -905     | -805          |  |
| 1.00 (25.4)  | 4.409 (112.0) | -910     | -810          |  |
| 2.00 (50.8)  | 5.409 (137.4) | -920     | -820          |  |
| 4.00 (101.6) | 7.409 (188.2) | -925     | -825          |  |

Standard strokes available:

1-in. (26 mm), 2-in. (51 mm) and 4-in. (102 mm). Customized strokes available to 6-in. (152 mm)

www.haydonkerkpittman.com

<sup>\*</sup>Values truncated. Standard motors are Class B rated for maximum temperature of 130°C.

<sup>\*</sup>Values truncated. Standard motors are Class B rated for maximum temperature of 130°C.

## TORQUE vs. PULSE RATE: ROTARY FUNCTION

- Bipolar
- 100% Duty Cycle



#### FORCE vs. PULSE RATE: LINEAR FUNCTION

- Chopper
- Bipolar
- 100% Duty Cycle
- 8:1 Motor Coil to Drive Supply Voltage



#### FORCE vs. LINEAR VELOCITY

- Chopper
- Bipolar
- 100% Duty Cycle
- 8:1 Motor Coil to Drive Supply Voltage



NOTE: All chopper drive curves were created with a 5 volt motor and a 40 volt power supply.

Ramping can increase the performance of a motor either by increasing the top speed or getting a heavier load accelerated up to speed faster. Also, deceleration can be used to stop the motor without overshoot.

With L/R drives peak force and speeds are reduced, using a unipolar drive will yield a further 30% force reduction.

a turtner 30% torce reduction.

www.haydonkerkpittman.com

NOTE:

\*METEK