# **Brushless IDEA™ Drive**

# **Hardware Manual**

# **PBL4850E**





# www.haydonkerk.com

All Rights Reserved 03-2015

# **Table of Contents**

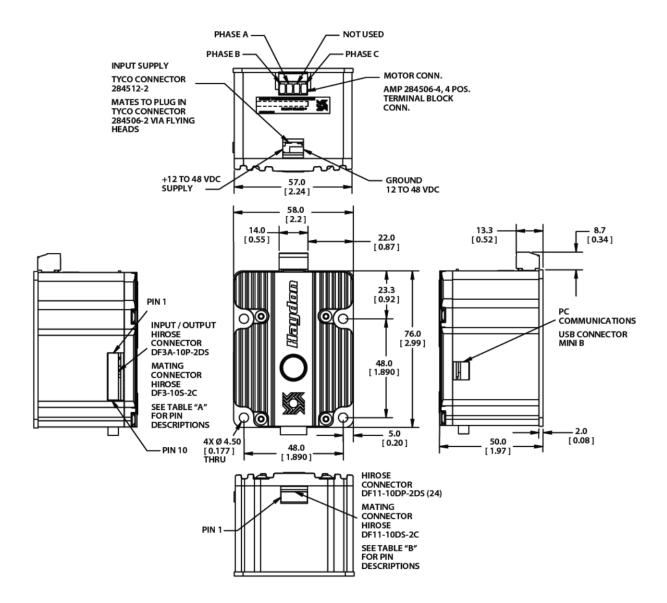
| Revision History                         |
|------------------------------------------|
| Introduction                             |
| Specifications                           |
| Engineering Drawings                     |
| Connections7                             |
| Basic Wiring Diagram                     |
| Accessories                              |
| Encoder Inputs                           |
| Encoder Wiring                           |
| Hall Cell Inputs 11                      |
| Hall Cell Wiring                         |
| Digital I/O Pin Descriptions             |
| Open Collector Output Pin Description 12 |
| Input Pin Description                    |
| Digital I/O Wiring                       |
| Digital Output Wiring Examples           |
| Digital Input Wiring Examples            |

# **Revision History**

| Date         | Description     |
|--------------|-----------------|
| January 2015 | Initial version |

### Introduction

This manual is intended to provide basic hardware specifications for the Haydon Kerk Brushless IDEA drive. For detailed information on use and programming of the drive, please refer to the IDEA Drive User's Manual. For detailed information on the command structure of the drive for coding purposes, please refer to the IDEA drive Communication Manual. All manuals are available at idea-drive.com.


# PBL4850E IDEA<sup>TM</sup> DRIVE

# **Specifications**

| Attribute                              | Value                             |
|----------------------------------------|-----------------------------------|
| Drive Input Voltage Range              | 12 – 48 VDC                       |
| Maximum Drive Current (per phase)      | 4.0 Arms (Up to 6.5 Apeak         |
|                                        | current boost capability during   |
|                                        | ramping)                          |
| Motor Type                             | 3 Phase Brushless                 |
| Commutation Type                       | Sinusoidal with Hall Cell         |
|                                        | Initialization                    |
| Hall Cell Spacing                      | 60° / 120°                        |
| Type of Ramping                        | Trapezoidal                       |
|                                        | S-Curve                           |
| Communications                         | USB (Mini B connector)            |
| Digital I/O Voltage Range              | 5-24Vdc                           |
| Digital Inputs                         | 4                                 |
| Digital Sinking Outputs                | 4                                 |
| Digital Output Maximum Sinking Current | 200mA (each)                      |
| Digital Input Maximum Current          | 8mA (each)                        |
| Maximum Temperature                    | 70°C (Measured at heat sink)      |
| Program Storage Size-Type              | 85 Kbytes-Flash                   |
| Maximum Number of Stored Programs      | 85, Referenced by 10              |
|                                        | character program names           |
| Position counter range                 | 64bit                             |
| Interrupt sources                      | 4 inputs (rising, falling or both |
|                                        | edges), internal position         |
|                                        | counter (when reaching a          |
|                                        | programmed position).             |

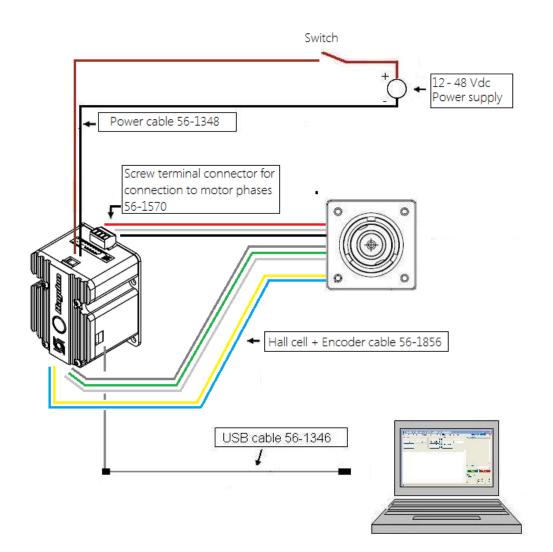
# **PBL4850E IDEA™ DRIVE Engineering Drawing**

### **Engineering Drawings**



#### Connections

|       | TABLE "A"         |            |
|-------|-------------------|------------|
| PIN # | DESCRIPTION       | NOTES      |
| 1     | GROUND I/O SUPPLY | 5 - 24 VDC |
| 2     | + I/O SUPPLY      | 5 - 24 VDC |
| 3     | INPUT 1           |            |
| 4     | INPUT 2           |            |
| 5     | INPUT 3           |            |
| 6     | INPUT 4           |            |
| 7     | OUTPUT 1          |            |
| 8     | OUTPUT 2          |            |
| 9     | OUTPUT 3          |            |
| 10    | OUTPUT 4          |            |


| TABLE "B"         |                 |  |  |
|-------------------|-----------------|--|--|
| PIN # DESCRIPTION |                 |  |  |
| 1                 | ENCODER CH A    |  |  |
| 3                 | ENCODER CH B    |  |  |
| 5                 | ENCODER INDEX   |  |  |
| 7                 | ENCODER 5VDC    |  |  |
| 9                 | ENCODER GND     |  |  |
| 2                 | HALL CELL A     |  |  |
| 4                 | HALL CELL B     |  |  |
| 6                 | HALL CELL C     |  |  |
| 8                 | HALL CELL 5 VDC |  |  |
| 10                | HALL CELL GND   |  |  |

**Basic Wiring:** To connect power to the drive and control it with the IDEA Drive User Interface you will need the following:

- A power supply, minimum of 12VDC.
- A PC
- Power cable (available from Haydon Kerk p/n 56-1348)
- Hall cell / Encoder harness (available from Haydon Kerk p/n 56-1856)
- Motor connected with screw terminal block (available from Haydon Kerk p/n 56-1570
- 10 wire I/O cable (available from Haydon Kerk p/n 56-1352).
  - Note: this cable is only required if the drive is interacting with an external device.
- USB to Mini B USB cable (available from Haydon Kerk p/n 56-1346)

The following page contains the proper wiring diagram for the IDEA drive, power supply and PC. The I/O and encoder cables are omitted.

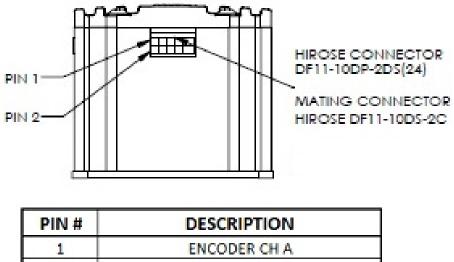
# **Basic Wiring Diagram**



#### Accessories

| Accessories                       | Part No. |
|-----------------------------------|----------|
| USB Cable (A to mini B), 2 meters | 56-1346  |
| Power Cable, 1 meter              | 56-1348  |
| I/O Cable, 1 meter                | 56-1352  |
| Motor Connector Screw Terminal    | 56-1570  |
| Hall Cell & Encoder Cable         | 56-1856  |

#### **Encoder Inputs**

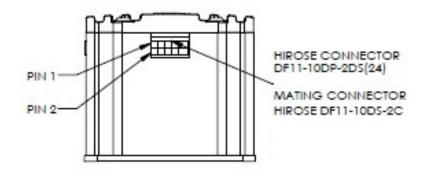

The IDEA drive is equipped with inputs for a single-ended, Quadrature encoder attached to the motor it drives. Quadrature encoders have 2 output signals, A and B, which are nominally 90 electrical degrees out of phase. On each rising or falling edge, the relative logic levels of the two phases can be used to determine the direction of rotation. The decoder within the drive interprets A leading B as motion in the clockwise direction, as viewed from the front face of the motor. This means that if a rising edge is detected on phase A, and phase B is at a logical high, then the motor just rotated counter-clockwise.

The IDEA drive watches for the rising and falling transitions on phase A and B, and increments or decrements the position counter accordingly. Using this method, a 1000 cycle per revolution optical rotary encoder would have 4000 counts per revolution.

#### **Encoder Wiring**

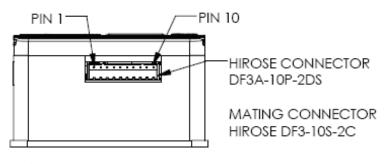
The encoder connector can be wired to any 2 channel quadrature encoder that operates between 3.3Vdc and 5Vdc. For encoders that work on 5VDC, power to the encoder can be supplied through pin 4 of the encoder connector, otherwise a separate 3.3Vdc power supply is required. Whether or not power is being supplied by the drive, pin 5 must be connected to the same ground as the encoder. This is internally connected to the IDEA drive's ground connection. Pin 3 is for encoders with an index signal. This may be left unconnected, and is for future revisions which may make use of the index signal.

Pins 1 and 2 are the A and B connections, respectively. When the output shaft of the motor is rotating clockwise as viewed from the front of the motor phase A should lead phase B. Check your encoder's documentation to check if A and B need to be swapped, which can also be performed via software.



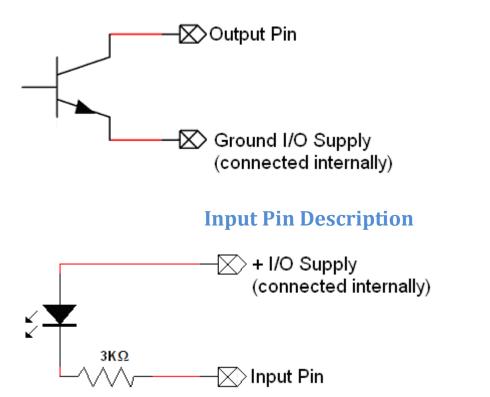

|   | LINGOULD OT A |
|---|---------------|
| 3 | ENCODER CH B  |
| 5 | ENCODER INDEX |
| 7 | ENCODER 5VDC  |
| 9 | ENCODER GND   |

#### **Hall Cell Inputs**


The brushless IDEA drive uses sinusoidal commutation and utilizes the hall cells for phase initialization. The IDEA drive accepts hall cell spacing configurations of 60° and 120°. Please follow the wiring diagram which came with the drive and motor combination for proper commutation and ideal motor performance.

#### Hall Cell Wiring




| PIN # | DESCRIPTION     |
|-------|-----------------|
| 2     | HALL CELL A     |
| 4     | HALL CELL B     |
| 6     | HALL CELL C     |
| 8     | HALL CELL 5 VDC |
| 10    | HALL CELL GND   |

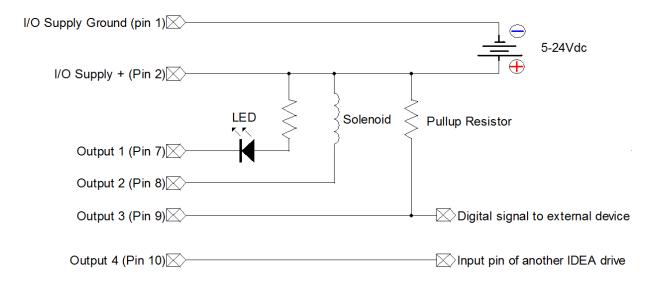
## **Digital I/O Pin Descriptions**



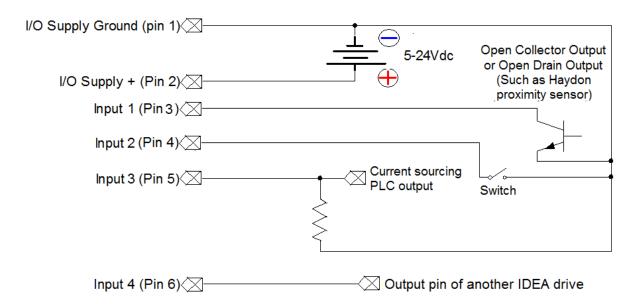
| PIN POSITION | DESCRIPTION       | NOTES       |
|--------------|-------------------|-------------|
| PIN 1        | GROUND I/O SUPPLY | 5 TO 24 VDC |
| PIN 2        | + I/O SUPPLY      | 5 TO 24 VDC |
| PIN 3        | INPUT 1           |             |
| PIN 4        | INPUT 2           |             |
| PIN 5        | INPUT 3           |             |
| PIN 6        | INPUT 4           |             |
| PIN 7        | OUTPUT 1          |             |
| PIN 8        | OUTPUT 2          |             |
| PIN 9        | OUTPUT 3          |             |
| PIN 10       | OUTPUT 4          |             |

## **Open Collector Output Pin Description**




### **Digital I/O Wiring**

The IDEA drive has four optically isolated inputs and four optically isolated, open-collector outputs. A power supply is necessary to activate the opto-isolators with a voltage range of 5-24VDC. As the outputs are open-collector, they will need a pull-up resistor tied to the + I/O supply if a high level voltage is required. The outputs are capable of sinking up to 200mA each.


<u>Note</u>: The inputs can be used in two ways. They can be connected to logic levels that swing between I/O supply ground and + I/O supply, or they can be attached to a switch connected to I/O supply ground. In the second configuration, when the switch is open, the drive will see this as a logic high, when the switch is closed, and the input is connected to I/O supply ground, the drive will see this as a logic low.

<u>Note:</u> When an input is connected to a mechanical switch or relay, a phenomenon called "bounce" can occur. When the switch contact is almost closed, several electrical arcs can form. If an input is being used as an interrupt, each arc will be seen as a rising and falling edge, causing several false interrupts to trigger. Any input being used as an interrupt source should only be attached to solid state devices or a switch with de-bounce circuitry.

## **Digital Output Wiring Examples**



## **Digital Input Wiring Examples**

