

Instruction Manual / Betriebsanleitung Digital Positioning Controller with integral MPU Digitale Positioniersteuerung mit integrierter MPU BGE 3508 / 6005

Edition / Ausgabe (07/2009)

1 Content	
2 About this document	٨
	-
3 Brief description	5
3.1 BGE 3508 / 6005	5
3.2 Explanations of terms used	6
3.3 Proper use	8
4 Safety instructions	9
5 Types of operation	10
5 1 Operatin modes	10
6 General performance data	10
o General performance data	12
/ General features	13
8 Dimension	13
9 Terminal assignment	14
9.1 Power supply and motor	15
connections BLDC	
9.2 Power supply and motor	
connections PMDC	15
	15
9.3 Hall Sensors/ Encoders & analog and	
digital inputs and outputs	16
10 Connection schematic	18
10.1 Connection brushless motor	18
10.2 Connection brush-type motor	18
10.3 Connection Hall sensors	19
10.4 Connection encoder	19
10.5 Connection power supply	20
10.6 Connection electronic	20
10.7 Connection CAN interface	21
10.7 Connection CAN interface	21
	22
12 Technical Data	22
12.1 Digital inputs	22
12.2 Digital output	23
12.3 Analog inputs	23
12.4 Inputs for hall sensors	23
12.5 Inputs for Encoders	24
12.6 Auxiliary power supplies	24
13 Installation	25
14 Commissioning	27
14 Commissioning	21
15 Slave in CANopen network,	•••
software "mPLC"	28
15.1 Hardware controller	28
15.2 Motion Starter Kit	29
15.3 Requirements	30
15.4 Introduction	30
15.5 Samples	30
15.6 Documentations	31
15.7 Control software mPLC	32
15.7.1 Introduction	32
15.7.2 System requirements	32
15.7.3 Installation of the Software mPLC	32
15.7.4 Installation CAN-USB adapter	32
•	

dunkermotoren advanced motion solutions

411.0	
1 Inhalt	_
2 Uber dieses Dokument	4
3 Kurzbeschreibung	5
3.1 BGE 3508 / 6005	5
3.2 Begriffserklärungen	6
3.3 Bestimmungsmäßige Verwendung	8
4 Sicherheitshinweise	9
5 Betriebsarten	10
5 1 Betriebsmodi	10
6 Allgemeine Leistungedeten	40
6 Allgemeine Leistungsdaten	12
7 Aligemeine Eigenschaften	13
8 Abmessung	13
9 Anschlussbelegung	14
9.1 Versorgungsspannung und	15
Motoranschluss bürstenlose	15
DC-Motoren	15
9.2 Versorgungsspannung und	15
Motoranschluss bürstenbehaftete	15
DC-Motoren	15
9.3 Hallsensor/ Encoder & Analoge und	
Digitale Ein- und Ausgänge	16
10 Anschlussschema	18
10 1 Anschluss hürstenloser Motor	18
10.2 Anschluss bürstenbehafteter Motor	18
10.3 Anschluss Hallsensoren	10
10.4 Anschluss Encoder	10
10.5 Anschluss Encoder	20
10.6 Anschluss Elektronik	20
10.0 Anschluss Elektronik	20
10.7 Anschluss CAN-Schnillslehe	21
	22
12 lechnische Daten	22
12.1 Digitale Eingänge	22
12.2 Digitale Ausgänge	23
12.3 Analoge Eingänge	23
12.4 Eingänge für Hallsensoren	23
12.5 Eingänge für Encoder	24
12.6 Hilfsspannungen	24
13 Installation	25
14 Inbetriebnahme	27
15 Slave in CANopen Netzwerk,	28
SoftwaremPLC"	28
15 1 Hardware Regler	28
15.2 Motion Starter Kit	29
15.3 Vorraussetzungen	30
15 4 Finführung	30
15.5 Samples	30
15.6 Documentations	31
15.7 Steuerungssoftware mPLC	32
	32
15.7.2 Systemvoruassetzungen	32
15.7.3 Installation der Software mPLC	32
15.7.4 Installation CAN-USB Adapter	32

15.7.5 mPLC Control Center	33
15.7.6 Python Script	34
15.7.7 CAN monitor	37
15.7.8 Terminal	39
15.7.9 Configuration	40
15.8 Objects	42
15.8.1 Object- / SDO-variable	42
15.8.2 Setup CAN objects	44
15.8.3 Setup CAN variables	45
15.8.4 Transmit / Receive	47
15.8.5 Recording	47
15.9 CAN master of other manufacturer	50
15.10 Communication settings	51
15.10.1 Standard variant – LMT services	51
15.10.2 Manufacturer-specific variant	52
15.11Test programs and other	
assistance	54
16 Maintenance & Service	55
16.1 Maintenance, decommisioning ar	nd
disposal	55
16.2 Service & support	55
16.3 Scope of supply and accessories	56

56

16.4 Download PDF-Data

15.7.5 mPLC Control Center	33
15.7.6 Python Script	34
15.7.7 CAN-Monitor	37
15.7.8 Terminal	39
15.7.9 Konfiguration	40
15.8 Objekte	42
15.8.1 Objekt- / SDO-Variable	42
15.8.2 Anlegen von CAN-Objekte	44
15.8.3 Anlegen von CAN-Variablen	45
15.8.4 Senden, Empfangen	47
15.8.5 Aufzeichnen	47
15.9 CAN-Master anderer Hersteller	50
15.10 Kommunikationseinstellungen	51
15.10.1 Standardvariante - LMT Dienst	e 51
15.10.2 Herstellerspezifische Variante	52
15.11 Testprogramme und weitere	Hilfs-
mittel	54
16 Wartung & Service	55
16.1 Wartung, Ausserbetriebsetzung	und
Entsorgung	55
16.2 Service & Support	55
16.3 Lieferumfang und Zubehör	56
16.4 Download PDF-Daten	56

2 About this document

These operating instructions introduce you to the Positioning Controller BGE 3508 / 6005 and inform you about all necessary steps for installation and carry-ing out initial functional tests. Further information about field bus operation is provided by the parameterisation list, and from the various publications of the CIA (Can in Automation Organisation) available at: www.can-cia.de.

2 Über dieses Dokument

Die vorliegende Betriebsanleitung stellt Ihnen die Positioniersteuerung BGE 3508 / 6005 vor und informiert Sie über alle Schritte zur Installation und zur Durchführung erster Funktionstests. Weitere Informationen zum Feldbusbetrieb erhalten Sie aus der Parametrierliste und diversen Unterlagen der CIA (Can in Automation Organisation): www.can-cia.de.

Warning! Read these instructions carefully and follow them!

Warnings are there to protect you from danger, and to help you to avoid damage to the device.

When you see this sign, always check that the unit is

disconnected from the electrical power supply, and

take precautions to prevent unintentional switching

Warnhinweise! Lesen und befolgen Sie diese sorgfältig!

Warnhinweise sollen Sie vor Gefahr schützen oder helfen Ihnen, eine Beschädigung des Gerätes zu vermeiden.

on.

Warning! Danger of electrocution! A

Achtung! Lebensgefahr durch Stromschlag!

Wenn Sie dieses Zeichen sehen, dann prüfen Sie stets ob das Gerät spannungsfrei und gegen versehentliches Einschaflten gesichert ist.

3 Brief description

3.1 BGE 3508 / 6005

The electronic controllers BGE 3508 / 6005 are 4-quadrant positioning controllers with integral output stage and an interface for stand-alone operation controlled by digital / analog inputs / outputs or for operation as Slave in CANopen networks (CANopen Drives Profile DSP 402, Protocol DS 301).

These electronic controllers are suitable for use with brushless or conventional DC motors (e.g. our BG and GR/G ranges). They incorporate protection against over-voltage, low voltage and excessive temperature, and have a status indicator which shows "Ready", "Status" or "Error". The most important parameters can be changed "on the fly" via the CAN interface.

Information about the rotor position can be supplied to the positioning controller either by the voltage or by an encoder in the case of commutator motors, or, for brushless motors, by Hall sensors or an incremental encoder.

3 Kurzbeschreibung

3.1 BGE 3508 / 6005

Bei der Steuerungselektronik BGE 3508 / 6005 handelt es sich um eine 4-Quadranten-Positioniersteuerung mit integrierter Endstufe und Schnittstellen für den Stand-alone Betrieb gesteuert über digitale oder analoge Ein- oder Ausgänge oder für den Betrieb als Slave in CANopen Netzwerken (CANopen Drives Profil DSP 402, Protokoll DS 301).

Die Steuerungselektronik ist zur Ansteurung bürstenloser oder bürstenbehafteter DC-Motoren (z.B. unsere Baureihen BG und GR/G) geeignet. Sie verfügt über Überspannungs-, Unterspannungs- und Übertemperaturabschaltung sowie eine Statusanzeige "Ready", "Status" und "Error". Die wesentlichen Parameter können über die Schnittstelle auch "in fly" verändert werden.

Informationen zur Motorlage können der Positioniersteuerung bei bürstenbehafteten Motoren über die Spannung oder per Encoder zugeführt werden, bei bürstenlosen Motoren per Hallsensoren oder per Inkrementalgeber (Encoder).

3.2 Explanations of terms used

Baud rate	Speed of transmission or communication
Bridge rectifier	Component for the transfor- mation from AC voltage to DC voltage
Bus	A communication network in which all nodes can be reached via passive links, and communication is possible in both directions
CAN master	"Command centre" of a bus
CAN adapter	Gateway for the conversion of TCP/IP to CANopen
CAN monitor	Graphic interface for the sup- port of commissioning the drive
Drive Assistant	Graphic interface for commis- sioning and parameterisation
CANopen	A group of profiles for net- works in the following fields of application: industrial au- tomation, medical equipment, building automation, railway vehicles, ships, trucks,
Default settings	Preset values
DSP 402	CANopen device profile for drives and controllers
Smoothing capa- citor	Component to smooth the fluctuation voltage
Hall sensors	Sensors for determining the position of a rotor
Homing	Reference procedure for the initial regulation of the drive position in the system
Impulse flanks	Signals given form the enco- der in the drive
In fly	Programming- / Parametri- zation possibility in attached condition
Index impulse	Reference mark of the inte- grated encoder panel

3.2 Begriffserklärungen

Baud rate	Übertragungs-/ Kommunikati- onsgeschwindigkeit	
Brückengleichrich- ter	Bauteil zur Umwandlung von Wechselspannung in Gleich- spannung	
Bus	Kommunikationsnetzwerk bei dem alle Knoten über passive Links erreicht werden können und Kommunikation in beide Richtungen möglich ist	
CAN Master	"Kommandozentrale" im Bus	
CAN-Adapter	Gateway zur Umsetzung von TCP/IP in CANopen	
CAN-Monitor	Graphische Oberfläche zur Un- terstützung der Inbetriebnahme des Antriebs	
Drive Assistant	Grafische Oberfläche zur Inbe- triebnahme und Parametrierung	
CANopen	Eine Gruppe von Profilen für Netzwerke in folgenden Anwen- dungen: Industrielle Automation, Medizintechnik, Gehäuseau- tomation, Schienenfahrzeuge, Seefahrt, Trucks,	
Defaultwerte	Voreingestellte Werte	
DSP 402	CANopen Geräteprofil An- triebe und Regler	
Glättungskonden- sator	Bauteil zur Glättung von Spannungsschwankungen	
Hallsensoren	Sensor zur Positionsbestim- mung des Rotors	
Homing	Reverenzierverfahren zur in- itialen Bestimmung der Po- sition des Antriebs in einem System	
Impulsflanken	Signale erzeugt von dem im Antrieb integrierten Geber	
In fly	Programmier- / Parametrier- möglichkeit im eingebauten Zustand	
Indeximpuls	Referenzmarke der inte- grierten Geberscheibe	

	-
Incremental encoder	Digital position indicator. An in- ternal logic processes a signal from photodiodes to produce two square-wave signals with a phase difference of 90°.
Commutation	The motor voltage is distribu- ted in blocks by an electronic controller
Motion controller	Motor control
mPLC	Interface for commissioning and for controlling CANopen slaves
Node ID	Device number/address – must be assigned to every device in a bus system
Phyton script	Programming language used in the Dunkermotoren Motion Starter Kit software
Position mode	Regulation of position
Ramps	Settings to accelerate and brake the drive
SVEL Mode	Fast speed regulation as a subordinate speed controller for a higher-level positioning system (e.g. a CNC-control system).
Terminator	Terminal resistance, which is to be used after the last par- ticipant in the communication network
Torque mode	Torque regulation, also referred to as "Current Mode"
Trajectory	Sequence of motions
T-connector	Component for the branching in the communication net- work
Velocity mode	Speed regulation

Inkrementalgeber	Digitaler Lagegeber. Eine in- terne Logik erzeugt aus dem Signal von Fotodioden zwei um 90° verschobene Recht- ecksignale.
Kommutierung	Die Motorspannung wird durch eine Elektronik block- weise weitergeschaltet
Motion controller	Motorsteuerung
mPLC	Oberfläche zur Inbetriebnah- me und zur Steuerung von CANopen Slaves
Node-ID	Gerätenummer/ -adresse, die jedem Gerät in einem Bus- system zugeordnet werden muss
Phyton Skript	Programmiersprache der Dunkermotoren Motion Star- ter Kit Software
Position Mode	Lageregelung
Rampen	Einstellungen zum Beschleu- nigen und Bremsen des An- triebs
SVEL Mode	Schnelle Drehzahlregelung als untergelagerter Drehzahl- regler für übergeordnete Po- sitioniersysteme (z.B. CNC-Steuerungen).
Terminator	Abschlußwiderstand, der nach dem letzten Teilnehmer innerhalb des Kommunikati- onsnetzwerks zu verwenden ist
Torque Mode	Auch "Current Mode", Dreh- momentregelung
Trajektorie	Bewegungsablauf
T-Stück	Bauteil zur Verzweigung des Kommunikationsnetzwerks
Velocity Mode	Drehzahlregelung

3.3 Proper use

- The positioning controller is a vendor part and may be used in the configuration described in machines and plant (industrial sector).
- The positioning controller must be securely mounted and must only be used with the cables and accessories specified by Dunkermotoren.
- The positioning controller may only be put into service after the complete system has been installed in conformity with EMC requirements.

3.3 Bestimmungsmäßige Verwendung

- Die Positioniersteuerung ist ein Zulieferteil und darf in der beschriebenen Konfiguration in Maschinen und Anlagen eingesetzt werden (industrieller Bereich).
- Die Positioniersteuerung muss fest montiert werden und darf nur mit den von Dunkermotoren spezifizierten Kabeln und Zubehörteilen eingesetzt werden.
- Die Positioniersteuerung darf erst nach EMV-gerechter Montage des Gesamtsystems in Betrieb genommen werden.

4 Safety instructions

Warning!

Before commissioning, the following safety instructions must, without fail, be read, understood and observed! Failure to follow them can result in danger to persons or damage to the machine.

To ensure trouble-free operation, appropriate methods of transport and conditions of storage must be employed. Please store the module so that it is protected from dust, dirt, and moisture. Take care that storage conditions are within the specified limits for storage temperature and humidity. Please transport the module under storage conditions with additional protection against shocks and jolts.

Follow the instructions for installation and adjustment precisely. **Installation and dismounting must only be carried out with the unit disconnected from the electrical power supply.** The module must only be installed and adjusted by qualified persons in accordance with the relevant standards. Qualified persons are those who:

- on the basis of their experience, can recognise and avoid potential dangers;
- are familiar with the accident-prevention regulations for the equipment employed; and
- are able to connect circuits and install equipment in accordance with the standards and regulations.

Please observe any regional standards and regulations that apply in the area where the components are used. Please also observe the safety instructions that apply to the equipment or machinery that is to be controlled. So as to be able to avert hazards, make sure that there is an EMERGENCY-STOP switch in immediate reach and with unrestricted access.

4 Sicherheitshinweise

Achtung!

Vor der Inbetriebnahme sind unbedingt die nachfolgen Sicherheitshinweise zu lesen und zu beachten! Eine Nichtbeachtung kann zu Gefahren bei Personen oder Beschädigungen an der Maschine führen!

Der störungsfreie Betrieb setzt entsprechenden Transport und Lagerung nach den entsprechenden Vorgaben voraus: Lagern Sie bitte das Modul geschützt vor Staub, Schmutz und Feuchtigkeit. Achten Sie darauf, dass die Lagerungsbedingungen nicht außerhalb der Lagerungstemperatur bzw. Luftfeuchtigkeit liegt. Transportieren Sie die Module bitte unter Lagerungsbedingungen, zusätzlich noch stoßgeschützt.

Befolgen Sie die Anleitung für den Aufbau und die Einrichtung genau. **Die Montage/Demontage darf nur im spannungslosen Zustand erfolgen**. Die Module dürfen nur von qualifiziertem Personal nach den entsprechenden Normen eingebaut und eingerichtet werden. Als qualifiziert gilt eine Person dann,

- wenn sie aufgrund ihrer Erfahrung mögliche Gefahren erkennen und vermeiden kann,
- wenn ihr die Unfallverhütungsvorschriften für die ein gesetzten Geräte bekannt sind und
- wenn sie gemäß den Normen Stromkreise und Ge räte in Betrieb setzen und installieren darf.

Bitte beachten Sie die regionalen Normen im Einsatzgebiet der Komponenten. Beachten Sie bitte auch die Sicherheitshinweise der zu steuernden Geräte und Maschinen. Um Gefahren abwenden zu können, vergewissern Sie sich, dass ein funktionstüchtiger NOTAUS-Schalter in direkter Reichweite mit unbehindertem Zugang liegt.

5 Types of operation

The **slave in CANopen network** offers the possibility to control the motors over the external controller via the software "mPLC", which is contained in the "Motion Starter Kit" (for details, see "Commissioning").

5.1 Operatin modes

The type of operation provides different operation modes to configure the motor exactly:

SVEL mode

Fast speed regulation as a subordinate speed controller for a higher-level positioning system (e.g. a CNCcontrol system).

Positioning mode using Hall sensors

Three Hall sensors spaced at 120° (included in all BG drives) provide information about rotation of the motor. When very precise positioning is required, an encoder with higher resolution should be employed.

Positioning mode using an encoder

By selecting a drive with an encoder with higher resolution, a control circuit can be set up which permits very precise positioning.

Torque mode

The current draw of the motor (which is proportional to the torque) is monitored and adjusted according to the setting.

5 Betriebsarten

Das **Slave in CANopen Netzwerk** ermöglicht das ansteuern von Motoren über den externen Regler via der Software "mPLC", die im "Motion Starter Kit" enthalten ist (näheres dazu, siehe "Inbetriebnahme").

5.1 Betriebsmodi

Die Betriebsart unterstützt verschiedene Metriebsmodi, mit denen der Motor genau konfiguriert werden kann:

SVEL Mode

Schnelle Drehzahlregelung als untergelagerter Drehzahlregler für übergeordnete Positioniersysteme (z.B. CNC-Steuerungen).

Position Mode per Hallsensoren

Drei um 120° versetzte Hallsensoren (Bestandteil aller BG-Antriebe) geben Aufschluss über die Weiterbewegung des Motors. Bei sehr hohen Anforderungen an die Positioniergenauigkeit sollte ein Encoder mit hoher Auflösung verwendet werden.

Position Mode per Encoder

Durch den Einsatz eines Antriebs mit Encoder mit einer hohen Auflösung wird ein Regelkreis aufgebaut der eine exakte Positionierung ermöglicht.

Torque Mode

Die Stromaufnahme des Motors (entspricht dem Drehmoment) wird überwacht und entsprechend der Vorgabe eingestellt.

Velocity mode using Hall sensors

When regulating using Hall sensors (included in all BG drives), rotation will be irregular at low speeds. This control system is used mainly in combination with motors with gear reducers. It is important that the speed can be set in a closed, digital control loop, and that the temperature remains stable over time.

Velocity mode using an encoder

By selecting a drive with an encoder with higher resolution, a control circuit can be set up which permits smooth rotation at low speeds. It is important that the speed can be set in a closed, digital control loop, and that the temperature remains stable over time.

Voltage regulation

(Only for commutator motors)

The actual motor voltage (measured at the appropriate output terminals of the controller) is compared with the required voltage and regulated accordingly. The motor voltage (speed of rotation) is thus independent of variations in the supply voltage.

IxR-compensation

(Only for commutator motors)

A motor consists, in principle, of a resistance and a coil. When the motor has to produce torque the appropriate current flows in it. The resistance causes a voltage drop, which increases as the current rises. A lower voltage supply to the motor means that the speed is lower. With IxR-compensation, to make up for this drop in speed and achieve the specified speed, the voltage at the output terminals to the motor is increased by the amount of the voltage drop.

Velocity Mode per Hallsensoren

Bei Regelung über Hallsensoren (Bestandteil aller BG-Antriebe) ist mit unsanftem Rundlauf bei kleinen Drehzahlen zu rechnen. Dieses Regelungssystem wird vor allem bei Einsatz von Getriebemotoren verwendet. Wichtig ist, dass die Geschwindigkeitsregelung im geschlossenen digitalen Regelungskreislauf eingestellt werden kann und über die Zeit und die Temperatur stabil ist.

Velocity Mode per Encoder

Durch den Einsatz eines Antriebs mit Encoder mit einer hohen Auflösung wird ein Regelkreis aufgebaut der sanften Rundlauf bei niedrigen Geschwindigkeiten erlaubt. Wichtig ist, dass die Geschwindigkeitsregelung im geschlossenen digitalen Regelungskreislauf eingestellt werden kann und über die Zeit und die Temperatur stabil ist.

Spannungsregelung

(nur bürstenbehaftete Motoren)

Die wirkliche Motorspannung (gemessen an den entsprechenden Ausgangsklemmen des Controllers) wird mit der erforderlichen verglichen und entsprechend nachgeregelt. Dadurch ist die Motorspannung (Drehzahl) unabhängig von Schwankungen der Versorgungsspannung

IxR-Kompensation

(nur bürstenbehaftete Motoren)

Ein Motor besteht aus einem Widerstand und einer Spule. Wird am Motor ein Drehmoment abgenommen, fliesst ein entsprechender Strom durch den Motor. Über den Widerstand entsteht ein Spannungsabfall, der mit steigendem Stromfluss größer wird. Eine geringere Spannung am Motor bedeutet eine geringere Drehzahl. Um diesen Drehzahlabfall zu kompensieren und die vorgegebene Drehzahl zu erreichen, wird die Spannung bei einer IxR-Kompensation an der ausgehenden Motorklemme entsprechend dem Spannungsverlust erhöht.

6 General performance data

Docori	ntion
Desch	μισπ

BGE 3508 / 6005

Performance data		
Supply voltage, electronics U _e	10 3	0 V DC
Supply voltage, power U _p	10 30 V DC	10 60 V DC
Current draw (no load at all outputs)	typ. 40 mA @ 24 V	
Maximum output current	7,5 A	5 A
Permissible continuous output current	2,5 A	2,0 A

Protective devices	
Over-voltage cut-off	yes
Low-voltage cut-off	yes
Over-temperature cut-off	yes

Inputs & outputs	
Digital inputs	3
Digital outputs	0
Analog inputs	1 (+/- 10 V)

CAN interface	
Baud rate	Up to 1 Mbit/s
Protocol	DS301 V3.0
Device profile	DSP402 V2.0

Ambient conditions	
Temperature	0 +70 °C
Humidity (non-condensing)	20 80 %

6 Allgemeine Leistungsdaten

Beschreibung	BGE 3508 / 6005
Beschreibung	BGE

Leistungsdaten		
Versorgungsspannung Elektronik U _e	10 30 V DC	
Versorgungsspannung Leistung U _p	10 30 V 10 60 V DC DC	
Stromaufnahme (alle Ausgänge unbelastet)	typ. 40 mA @ 24 V	
Maximaler Ausgangsstrom	7,5 A	5 A
zulässiger Daueraus- gangsstrom	2,5 A	2,0 A

Schutzeinrichtungen	
Überspannungs- abschaltung	ја
Unterspannungs- abschaltung	ја
Übertemperatur- abschaltung	ја

Ein- & Ausgänge	
Digitale Eingänge	3
Digitale Ausgänge	0
Analoge Eingänge	1 (+/- 10 V)

CAN-Schnittstelle	
Baudrate	bis 1 Mbit/s
Protokoll	DS301 V3.0
Geräteprofil	DSP402 V2.0

Umgebungsbedingungen		
Temperatur	0 +70 °C	
Feuchtigkeit (nicht kondensierend)	20 80 %	

7 General features

Description	Data
Degree of protection to DIN 40050 / IEC 144	IP20
CAN – CPU electrically connected	Yes
CPU - GND and I/O - GND electrically connected	Yes

Mounting	Fixing clips
Display	
Ready LED	Green
Status LED	Yellow
Error LED	Red

Cable cross-section of push-in terminals		
Motor plug Up to 1.5 mm ²		
Dual plug	Up to 1 mm ²	

7 Allgemeine Eigenschaften

Beschreibung	Wert
--------------	------

Schutzart nach DIN 40050 / IEC 144	IP20
CAN – CPU elektrisch verbunden	Ja
CPU - GND und I/O - GND elektrisch verbunden	Ja

Befestigung	Bohrlöcher
Anzeige	
Ready-LED	Grün
Status-LED	Gelb
Error-LED	Rot

Kabelquerschnitte der Steckkontakte		
Motorstecker bis 1,5 mm ²		
Doppelstecker	bis 1 mm ²	

8 Dimension

8 Abmessung

9 Terminal assignment

Warning!

Terminal $\overline{X}1.1$ (electronic supply) **is** internal **not** connected with terminal X2.1 (power supply).

Terminal X2.2 (Earth for power supply) **is** internal connected with terminal X2.14 (Earth for Hall/encoder) and X1.2 (Earth for electronic supply).

9 Anschlussbelegung

Achtung!

Klemme X1.1 (Spannungsversorgung Elektronik) **ist** intern **nicht** mit Klemme X2.1 (Spannungsversorgung Leistung) verbunden.

Klemme X2.2 (Masse Leistung) **ist** intern mit Klemme X1.14 (Masse für Hall/Encoder) und X1.2 (Masse Elektronik) verbunden.

Warning!

By assembling the cables consider the skinning length of the paticular connectors.

At the double-row connectors (X1,X2) it averages 7 mm.

Achtung!

Beachten Sie bei der Konfektionierung aller Leitungen auf die Abisolierlänge für die jeweiligen Stecker. Bei den doppelreihigen Steckern (X1,X2) beträgt sie 7 mm.

9.1 Power supply and motor connections BLDC

Terminal	Designa- tion	Description	Signal direction
X2.1	+U _p	Supply voltage, power	Input
X2.2	GND	Earth for power supply	-
X2.3	Ма	Motor connection A	Output
X2.4	Mb	Motor connection B	Output
X2.5	Мс	Motor connection C	Output

9.2 Power supply and motor connections PMDC

Terminal	Designa- tion	Description	Signal direction
X2.1	+U _E	Supply vol- tage, power	-
X2.2	GND	Supply voltage, power	Input
X2.3	Ма	Motor +	Output
X2.4	Mb	Motor -	Output
X2.5	Мс	n.c.	Output

9.1 Versorgungsspannung und Motoranschluss bürstenlose DC-Motoren

Klemme	Bezeich- nung	Beschreibung	Signal- richtung
X2.1	+U _p	Spannungs- versorgung Leistung	Eingang
X2.2	GND	Masse Leistung	-
X2.3	Ма	Motor- anschluss A	Ausgang
X2.4	Mb	Motor- anschluss B	Ausgang
X2.5	Мс	Motor- anschluss C	Ausgang

9.2 Versorgungsspannung und Motoranschluss bürstenbehaftete DC-Motoren

Klemme	Bezeich- nung	Beschreibung	Signal- richtung
X2.1	+U _E	Spannungs- versorgung Leistung	Eingang
X2.2	GND	Masse Leistung	-
X2.3	Ма	Motor +	Ausgang
X2.4	Mb	Motor -	Ausgang
X2.5	Мс	n.c.	Ausgang

9.3 Hall Sensors/ Encoders & analog and digital inputs and outputs

Terminal	Desi- gnation	Description	Signal direction
X1.1	+U _E	Supply voltage electronic	-
X1.2	GND	Earth for electronic	-
X1.3	AIN0	analog input 0	Input
X1.4	DIN0	digital input 0	Input
X1.5	DIN1	digital input 1	Input
X1.6	DIN2 / DOUT0	digital input 2 / digital output 0	Input Output
X1.7	CAN_HI	CAN high	Bus
X1.8	CAN_LO	CAN low	Bus
X1.9	/H1	Negated Hall- sensor signal 1	Input
X1.10	/H2	Negated Hall- sensor signal 2	Input
X1.11	/H3 / Inx	INegated Hallsen- sor signal 3 / Inc. Encoder Index	Input
X1.12	/A	Incr. encoder - negated track A	Input
X1.13	/INX	Incr. encoder - negated track B	Input
X1.14	+U _{5V}	Power supply Hall/ Enc +5V	Output
X1.15	GND	Earth fir Hall/enco- der	-

9.3 Hallsensor/ Encoder & Analoge und Digitale Ein- und Ausgänge

Klemme	Bezeich- nung	Beschreibung	Signal- richtung
X1.1	+U _E	Spannungsversor- gung Elektronik	-
X1.2	GND	Masse Elektronik	-
X1.3	AIN0	analoger Eingang 0	Eingang
X1.4	DIN0	digitaler Eingang 0	Eingang
X1.5	DIN1	digitaler Eingang 1	Eingang
X1.6	DIN2 / DOUT0	digitaler Eingang 2/ digitaler Ausgang 0	Eingang Ausgang
X1.7	CAN_HI	CAN high	Bus
X1.8	CAN_LO	CAN low	Bus
X1.9	/H1	Negiertes Hallsensorsignal 1	Eingang
X1.10	/H2	Negiertes Hallsensorsignal 2	Eingang
X1.11	/H3 / Inx	Negiertes Hallse- norsignal 2 / Inc. Encoder - Index	Eingang
X1.12	/A	Inc. Encoder - Negierte Spur A	Eingang
X1.13	/B	Inc. Encoder - Negierter Spur B	Eingang
X1.14	+U _{5V}	Spannungsversor- gung für Hall/Enc +5V	Ausgang
X1.15	GND	Masse für Hall/Encoder	-

10 Connection schematic

Warning!

Before installation, the safety instructions must, without fail, be read, understood and observed! Disconnect the unit from the

electrical power supply.

Failure to follow them can result in danger to persons or damage to the machine.

10.1 Connection brushless motor

10 Anschlussschema

Achtung!

Vor der Installation sind unbedingt die Sicherheitshinweise zu lesen und zu beachten! Gerät spannungsfrei schalten!

Eine Nichtbeachtung kann zu Gefahren an Personen oder Beschädigungen and der Maschine führen.

10.1 Anschluss bürstenloser Motor

10.2 Connection brush-type motor

Instruction Manual/Betriebsanleitung BGE 3508 / 6005, Version: 1.1 en_de © 2009 Dunkermotoren GmbH; D-79848 Bonndorf; Germany

10.2 Anschluss bürstenbehafteter Motor

10.3 Connection Hall sensors

Warning! Only with burshless DC motors!

10.3 Anschluss Hallsensoren

Achtung! Nur bei bürstenlosen Gleichstromotoren!

10.4 Connection encoder

10.4 Anschluss Encoder

10.5 Connection power supply

10.5 Anschluss Spannungsversorgung

10.6 Connection electronic

10.6 Anschluss Elektronik

10.7 Connection CAN interface

10.7 Anschluss CAN-Schnittstelle

11 Block diagram

11 Blockschaltbild

12 Technical Data

12 Technische Daten

12.1 Digital inputs

12.1 Digitale Eingänge

Description	Data
Number of inputs	3
Input voltage, low (UIN low)	-30 V 5 V
Input voltage, high (UIN high)	15 V 30 V
Input current, high max. (@ UIN = 30 V)	typ. 5.3 mA
Conducted emission limits	CE conform
Maximum frequency	Ca. 500 Hz

Beschreibung	Wert
Anzahl	3
Eingangsspannung Low (UIN low)	-30 V 5 V
Eingangsspannung High (UIN high)	15 V 30 V
Eingangsstrom High max. (@ UIN = 30 V)	typ. 5.3 mA
Störspannungsfestigkeit	CE-Konform
Maximale Frequenz	Ca. 500 Hz

12.2 Digital output

12.2 Digitale Ausgänge

Description	Data
Number of outputs	1
Туре	Positive switching
Max. output current	0.5 A
Short-circuit resistant	Yes
Potential-free	No

Beschreibung	Wert
Anzahl	1
Тур	Plus schaltend
max. Ausgangsstrom	0.5 A
Kurzschlussfest	Ja
Potentialfrei	Nein

12.3 Analog inputs

Description	Data
Number of inputs	1
Туре	Differential
Measurement range	±10 V
Resolution	10 bit
Input impedance (differential)	Ca. 150 kOhm
Conducted emission limits	CE conform

12.4 Inputs for hall sensors

Description	Data
Number of inputs	3
Туре	Differential or single-ended
Inputs	H1, H2, H3
Input voltage	5 V
Max. cycle frequency	3 kHz
Conducted emission limits	CE-Konform

12.3 Analoge Eingänge

Beschreibung	Wert
Anzahl	1
Тур	Differentiell
Messbereich	±10 V
Auflösung	10 Bit
Eingangsimpedanz (differentiell)	ca. 150 kOhm
Störspannungsfestigkeit	CE-Konform

12.4 Eingänge für Hallsensoren

Beschreibung	Wert
Anzahl	3
Тур	Differentiell od. Single ended
Eingänge	H1, H2, H3
Eingangsspannung	5 V
max. Taktfrequenz	3 kHz
Störspannungsfestigkeit	CE-Konform

12.5 Inputs for Encoders

Description	Data
Number of inputs	3
Туре	Differential or single-ended
Inputs	A, B, Inx
Input voltage	5 V
Max. cycle frequency	300 kHz
Conducted emission limits	CE conform

12.6 Auxiliary power supplies

Description	Data	
Power supplies for Hall sensors and encoders		
Output voltage	5V ±5%	
Maximum load	200 mA	

12.5 Eingänge für Encoder

Beschreibung	Wert
Anzahl	3
Тур	Differentiell od. Single ended
Eingänge	A, B, Inx
Eingangsspannung	5 V
max. Taktfrequenz	300 kHz
Störspannungsfestigkeit	CE-Konform

12.6 Hilfsspannungen

Beschreibung	Wert		
Versorgungsspannung für Hallsensoren und Encoder			
Ausgangsspannung 5 V ± 5%			
Maximale Belastung	200 mA		

13 Installation

Warning!

Before installation, the safety instructions must, without fail, be read, understood and observed! Disconnect the unit from the electrical power supply.

Take care!

During installation, ensure that connectors are not damaged. Bent pins can cause a short circuit and destroy the controller.

Warning!

Do not confuse the power supply lines!

The entire circuitry is designed for a correctly-poled direct-current supply. If you reverse the plus and minus poles, the electronics will be severely damaged.

Warning!

First connect only the control circuit to the power supply. Do not connect the motor yet! Set the desired parameters and operating modes, and check whether the LEDs indicate normal operation. Only connect the motor when that is the case.

13 Installation

Achtung!

Vor der Installation sind unbedingt die Sicherheitshinweise zu lesen und zu beachten! Gerät spannungsfrei schalten!

Vorsicht!

Achten Sie bei der Installation darauf, dass die Steckverbinder nicht beschädigt werden. Umgebogene Pins können den Regler durch Kurzschluss zerstören.

Achtung!

Vertauschen Sie nicht die Spannungsversorgungsleitungen! Die gesamte Schaltung ist auf gepolte Gleichspannung ausgelegt. Wenn Sie den Plus- und Minuspol vertauschen, nimmt die Elektronik schweren Schaden.

Achtung!

Schliessen Sie zuerst nur die Steuerung an die Stromversorgung an. Schliessen Sie den Motor noch nicht an! Stellen Sie die gewünschten Parameter und Arbeitsmodi ein und überprüfen Sie, ob die LEDs einen normalen Betrieb anzeigen. Erst dann darf der Motor angeschlossen werden. **Smoothing capacitor:** during braking operations, kinetic energy is stored as electrical energy in an intermediate circuit of the regulation circuit. This can cause excessive voltage in the intermediate circuit, which, in an extreme case, could cause damage to electrical components. To prevent this, a DC-power supply should be used which has a bridge rectifier and a smoothing capacitor of at least 1000 μ F per 1 A nominal motor current. In addition, we recommend that a discharge resistor (e.g. 1 k Ω , power loss > U²/1000 Ω) is used.

Warning!

If there is frequent heavy braking, the ballast resistor, and in consequence other circuit components, may be overloaded and damaged unless appropriate measures are taken to prevent excessive voltage (see "Smoothing capacitor", above).

The electrical supplies for power and logic (electronics) may only be switched in parallel when there is no possibility of voltage spikes exceeding 30 V.

When connecting, please remember that there is no reverse-pole protection for the supply voltage. All outputs have short-circuit protection.

Glättungskondensator: Bei Bremsvorgängen wird die kinetische Energie als elektrische Energie in den Zwischenkreis des Regelkreises zurückgeführt. Dabei kann es im Zwischenkreis zu Spannungsüberhöhungen kommen, die im Extremfall Schäden an elektrischen Bauteilen verursachen können. Um dies zu verhindern sollten DC-Netzteile mit Brückengleichrichter und einem Glättungskondensator von mindestens 1000 µF pro 1 A Motornennstrom verwendet werden. Zusätzlich wird die Verwendung eines Entladewiderstands (z. B. 1 k Ω , Verlustleistung > U²/1000 Ω) empfohlen.

Achtung!

Bei häufigem starken Bremsen kann der Ballastwiderstand und als Folge auch weitere Schaltungsteile überlastet und zerstört werden, falls nicht geeignete Maßnahmen zur Vermeidung von zu starken Spannungsüberhöhungen ergriffen werden (s.o. Glättungskondensator)

Die Spannungsversorgungen für Leistung und Logik (Elektronik) dürfen nur dann parallel geschalten werden, wenn Spannungsspitzen von über 30 V ausgeschlossen werden können.

Beachten Sie beim Anschließen, dass für die Versorgungsspannungen kein Verpolungsschutz besteht. Sämtliche Ausgänge sind kurzschlusssicher ausgeführt.

14 Commissioning

When the power supply has been connected, the unit can be switched on. The module is then open to access from the software side.

For the connection between the Positioning Controller and a PC, you need the appropriate Starter Kit with adapter cable and software.

The **slave in CANopen** network requires the "Motion Starter Kit" with the software "mPLC".

(not included in the scope of supply)

Further inforamtion you can find under chapter 15.

14 Inbetriebnahme

Ist die Spannungsversorgung hergestellt kann das Gerät eingeschaltet werden. Nun kann der softwareseitige Zugriff auf das Modul erfolgen.

Für die Verbindung zwischen Positioniersteuerung und PC benötigen Sie das passende StarterKit mit Adapterkabel und Software.

Das **Slave in CANopen** Netzwerk benötigt das "Motion Starter Kit" mit der Software "mPLC". (Nicht im Lieferumfang enthalten) Weitere Informationen finden Sie unter Kapitel 15.

15 Slave in CANopen network, software "mPLC"

15.1 Hardware controller

Three CAN cables must never be connected at an intermediate connector, because this would result in branching of the bus, which is forbidden.

Screen earthing: To prevent interference with data transmission, the screening of the cables must be earthed. To do this, you must connect it to the ground terminal (CAN-GND) of the module. If you earth both ends of the screening of a cable, you must ensure that there is a conducting connection between the two earthing points to equalise the potential between them. Without such a conducting connection, it is best to earth only one end of the screening.

CAN connection: the modules can be addressed on the CAN bus.

When connecting CAN subscribers, leads that comply with the standard ISO 11898 must be employed. Such leads must have the following features:

- twisted pairs
- with screening
- an impedance of 120 Ohm

15 Slave in CANopen Netzwerk, Software "mPLC"

15.1 Hardware Regler

An einem Zwischenstecker dürfen nicht 3 CAN-Kabel angeschlossen werden, da so der Bus unerlaubterweise verzweigt werden würde.

Schirmerdung: Um Störungen der Datenübertragung zu vermeiden, muss der Kabelschirm geerdet werden. Dazu verbinden Sie ihn mit der Masseklemme (CAN-GND) des Moduls. Wenn Sie beide Seiten eines Kabelschirms erden, müssen Sie einen Potentialausgleich durch eine leitende Verbindung zwischen den beiden Erdungspunkten eines Schirmes durchführen. Ohne diesen Ausgleich empfiehlt sich nur die einseitige Erdung des Kabelschirms.

CAN-Anschluss: Die Module können über CAN-Bus angesprochen werden.

Für die Verbindung der CAN-Teilnehmer muss eine Leitung, die der Norm ISO 11898 entspricht, eingesetzt werden. Die Leitung muss folgende Hauptmerkmale aufweisen:

- paarweise verdrillt
- mit Schirmgeflecht
- Wellenwiderstand von 120 Ohm

15.2 Motion Starter Kit

To use the software "mPLC", the user have to order the Motion Starter Kit of the slave in CANopen operation seperately.

The Motion Starter Kit contains:

- the software "mPLC"
- CAN-USB adapter with connecting cable
- T-piece 0906 UTP 101
- Terminator (male) 0930 CTX 101

SNR Motion Starter Kit:

27573 35615

Add-on Kit

To create a network containing several motors, the CAN bus must be extended from one motor to the next. This is carried out by using a T-connector. The motors are connected by a bus cable, and a termination resitor must be connected at the end of the bus.

The add-on Kit contains:

- T-piece 0906 UTP 101
- Drop cable 0935 253 103/1 (Fa. Lumberg)

SNR Add-on Kit:

15.2 Motion Starter Kit

Um die Software "mPLC" nutzen zu können, muss der Anwender das Motion Starter Kit für den Slave in CANopen Betrieb seperat bestellen. Im Motion Starter Kit enthalten sind:

- die Software "mPLC"
- CAN-USB Adapter mit Verbindungskabel
- T-Stück 0906 UTP 101
- Terminator (männlich) 0939 CTX 101
- SNR Motion Starter Kit: 27573 35615

Starterkiterweiterung

Um mehrere Motoren miteinander zu vernetzen, muss man den CAN Bus von einem Motor zum nächsten weiterschleifen. Dies kann mit einem T-Stück realisiert werden. Zwischen den Motoren befindet sich ein Buskabel und am Ende des Bus sollte mit einem Terminator abgeschlossen werden.

In der Erweiterung erhalten sind:

- T-Stück 0906 UTP 101
- Dropkabel 0935 253 103/1 (Fa. Lumberg)

27573 35616 SNR Starterkiterweiterung: 27573 35616

15.3 Requirements

For the commissioning of the controller a CAN-master is necessary. For this the following options are available:

- A PC / laptop and the miCAN USB Adapter are needed.
- mPLC is provided in the Starter Kit and can be installed from the CD (see further details during the installation).
- CAN master of other manufacturer

15.4 Introduction

With the mPLC control program, Dunkermotoren provides a comprehensive software tool with which it is possible to extensively configure the controller. Via the CAN interface, the software establishes a connection with the controller and control it with the individual configuration.

15.5 Samples

"Python Scripts" are example scripts, which can be loaded and used from the program mPLC.

"CAN monitor" is a program to observe and send CAN messages. Thus a CAN transmission can be controlled, supervised, displayed and interpreted. For CAN objects could be used both CAN-Open PDO- (Process Data Object) and SDO- (Service Data Object), which can be noted then.

On the CD you can find some example files for the CAN monitor.

15.3 Vorraussetzungen

Zur Inbetriebnahme des Reglers ist ein CAN-Master erforderlich. Hierzu stehen die folgenden Varianten zur Verfügung:

- Ein PC / Laptop und der miCAN-USB Adapter werden benötigt.
- mPLC wird im Starterkit mitgeliefert und kann von der CD installiert werden (s. weitere Hinweise während der Installation)
- CAN-Master anderer Hersteller

15.4 Einführung

Mit dem Steuerungsprogramm mPLC bietet Dunkermotoren ein umfangreiches Softwaretool, mit dem es möglich ist verschiedene Regler umfangreich zu konfigurieren. Über die CAN-Schnittstelle stellt die Software die Verbindung mit dem Regler her und steuert diesen mit der individuellen Konfiguration.

15.5 Samples

"**Python Scripts**" sind Beispielskripte, die aus dem Programm mPLC geladen und verwendet werden können.

"CAN Monitor" ist ein Programm, um CAN-Nachrichten zu beobachten und zu senden. Damit lässt sich eine CAN-Übertragung steuern, überwachen, darstellen und interpretieren.

Als CAN-Objekte können sowohl CAN-Open PDO-(Process Data Object) als auch SDO- (Service Data Object) Objekte verwendet werden, die dann aufgezeichnet werden können.

Auf der CD finden Sie einige Beispiel-Dateien zum CAN Monitor.

15.6 Documentations

"BGE 3508/6005, BGE 3515/6010, BGE 6050"

The particular manuals for the controllers in PDF format are shown here.

"DSA Parameters Help"

Object register of the manufacturer, in which are descripted the user specific objects.

"CANopen DSP 301"

Here you will find the link to the homepage "www. can-cia.org! "Organization manufacturer spanning general CAN objects". On these homepage the user can download the current version of the object register "CiA 301 DS" for CANopen.

15.6 Documentations

"BGE 3508/6005, BGE 3515/6010, BGE 6050"

Hier befinden sich die jeweiligen Betriebsanleitungen zu den Reglern in PDF-Format.

"DSA Parameters Help"

Objektverzeichnis des Herstellers, in dem die anwenderspezifischen Objekte beschrieben sind.

"CANopen DSP 301"

Hier finden Sie einen Link zur Homepage "www.cancia.org" "Organsiation Herstellerübergreifende allgemeiner CAN Objekte". Auf dieser Homepage kann der Anwender die aktuellste Version des Objektverzeichnisses "CiA 301 DS" für CANopen downloaden.

15.7 Control software mPLC

15.7.1 Introduction

The software mPLC offers the possibility to the programming, operation and observation of CANopen units from the company Dunkermotoren. Additionally the software offers several service functions.

15.7.2 System requirements

Operating system: Windows 2000, Windows XP Home, Windows XP Pro, Windows Vista. The installation files for mPLC can be loaded from the CD-ROM provided.

15.7.3 Installation of the Software mPLC

Administrator privileges are necessary for the installation. The installation menu will start automatically when you insert the CD-ROM.

Alternatively you can open the file install.htm in the Windows-Explorer to open the installation menu. The program will guide you through the installation menu.

Go ahead the installation in case a warning notice concerning the USB device driver will pop up. After successful installation the mPLC can be started by the desktop link.

15.7.4 Installation CAN-USB adapter

After mPLC was installed accordingly, the program can be started. When starting, the program searches automatically for a CAN interface. mPLC supports the CAN-USB adapter from Dunkermotoren. When opening the "Control Center" the following message should be indicated in the status field: **OK: CAN-BUS was initialized.**

15.7 Steuerungssoftware mPLC

15.7.1 Einführung

Die Software mPLC bietet die Möglichkeit der Programmierung, Bedienung und Beobachtung von CANopen Geräten der Firma Dunkermotoren. Zusätzlich bietet die Software verschiedene Servicefunktionen.

15.7.2 Systemvoruassetzungen

Betriebssystem: Windows 2000, Windows XP Home, Windows XP Pro, Windows Vista. Sie können die Installations-Dateien für mPLC von der mitgelieferten CD-ROM installieren.

15.7.3 Installation der Software mPLC

Zur Installation des Programms benötigen Sie Admin-Rechte. Nach dem Einlegen der CD-Rom öffnet sich das Installationsmenü automatisch. Sollte sich das Menü nicht automatisch öffnen, so öffnen Sie im Windows- Explorer die sich auf der CD-Rom befindende Datei install.htm. Sie werden nun durch das Installationsmenü geführt. Klicken Sie auf "Installation fortsetzen", falls während der Installation ein Warnhinweis bezüglich Treiber für den USB-Controller erscheint. Nach erfolgreicher Installation kann mPLC über die Desktop-Verknüpfung geöffnet werden.

15.7.4 Installation CAN-USB Adapter

Nachdem mPLC ordnungsgemäß installiert wurde, kann das Programm gestartet werden. Beim Starten wird nach einer CAN-Schnittstelle gesucht. Standardmäßig unterstützt mPLC den CAN-USB Adapter von Dunkermotoren. Beim Öffnen des "Control Centers" sollte im Statusfeld folgende Meldung angezeigt werden: **OK: CAN-BUS was initialized.**

This message appears if the settings are correct and the CAN-USB adapter was indentified accurately.

Diese Meldung erscheint, wenn alle Einstellungen korrekt vorgenommen und der CAN-USB Adapter richtig erkannt wurde. If the message **"INFO: CAN-USB - not found"** is indicated in the status field, no CAN-USB adapter was identified.

In this case, it must be examined if the CAN-USB adapter is connected to the correct PC interface and if the Power-Led flashes.

Sollte wie in der unteren Abbildung im Status die Meldung **"INFO: CAN-USB - not found"** stehen, wurde kein CAN-USB Adapter erkannt. Hier muss überprüft werden, ob der CAN-USB Adapter mit der entsprechenden Schnittstelle am PC verbunden ist und ob die Power-Led leuchtet.

If the CAN-USB adapter is still not identified despite repeated examination, check chapter "11.8 Configuration" to adjust the settings for the CAN adapter (see side 43). Sollte der CAN-USB Adapter trotz nochmaliger Überprüfung weiter nicht erkannt werden, können unter dem Kapitel "11.8 Configuration" die Einstellungen für die jeweilige Adapterart verändert werden (siehe Seite 43).

15.7.5 mPLC Control Center

15.7.5 mPLC Control Center

Python Script CAN Monitor Ierminal Configuration About INFD: CAN-ParallelPort - CAN-Card not found INFD: CAN-ParallelPort - CAN-Card not found Interrupt Mode	ort:	
Source of the second seco	ort:	
Baudrate Enabled Serial interface Port	AUTO AUTO SPP 125 kBit/s Yes	

The "Control Center" represents the main menu of the program mPLC.

Here i.e. Python Script and CAN monitor can be selected.

In addition under "Configurate" it is possible to configure the hardware.

Das "Control Center" stellt das Hauptmenü des Programms mPLC dar.

Hier kann u.a. das Python Script und der CAN Monitor ausgewählt werden. Zudem ist hier unter "Configuration" die Hardwarekonfiguration möglich.

15.7.6 Python Script

The start of mPLC opens the "Control center" in which you can admit "Python Script" (among other things).

Python is a programming language, which enfold several programming paradigms. Thus the objectoriented, aspect-oriented and functional programming is supported.

15.7.6 Python Script

Beim Starten von mPLC öffnet das "Control Center" in welchem man u.A. "Python Srcipt" anwählen kann.

Python ist eine Programmiersprache, die mehrere Programmierparadigmen umfasst. So wird die objektorientierte, aspektorientierte und funktionale Programmierung unterstützt.

Menu bar

Menüleiste

All settings (CAN-objects, - variables) can be stored in form of Python file type (*py):

Alle Einstellungen (CAN-Objekte, -Variable) können in Form des Dateityps Python (*.py) gespeichert werden:

Generate an new emty file Opens an existing file Safe the current file Safe the current file under a new name Terminates the CAN monitor

File	Edit Scrip	t Python
	New	
1	Open	Ctrl+F3
	Save	Ctrl+F2
	Save as .	
•	Exit	

Erzeugt eine neue leere Date Öffnet eine bestehende Datei Speichert die aktuelle Datei Speichert die aktuelle Datei unter einem neuen Namen Beendet den Python Script Monitor

"Edit" offers the possibility to undo steps or to redo steps.

Unter "Edit" besteht die Möglichkeit Arbeitsgänge rückgängig zu machen oder Arbeitsgänge vorwärts zu schalten.

	Edit	Script	Python	Module	
Undo step	ĸ)	Undo	Alt+I	BkSp	Arbeitsschritt rückgängig
Redo step	CH.	Redo			Arbeitsschritt vorwärts

In the menu "Script" the Syntax can be controlled and the Script can be started.

In addition it exists the possibility to pause and to continue the Script, as well as to stop the Script. Im Menü "Script" kann der Syntax überprüft und das Script gestartet werden. Des Weiteren besteht die Möglichkeit das Script anzuhalten und fortzufahren, sowie es zu beenden.

Checking the Syntax Run the Script Pause the Script Continue the Script Stop the Script

Syntax überprüfen Starten des Scripts Script pausieren Script fortsetzen Script stoppen

In the menu "Python" the handbook and the documentation of the modules are intended (among other things). Im Menü "Python" befinden sich unter anderem das Handbuch und die Dokumentation der Module.

	Pyth	on Modules About	
Opens Python promt	Ξ	Console-GUI (IDLE)	Öffnet "Python promt"
Opens the console		Console	Öffnet die Konsole
Opens the handbook	٢	Handbook	Öffnet das Handbuch
Opens the handbook in HTML version	Ø	Handbook (HTML)	Öffnet das Handbuch in HTML-Version
Opens the Python documentation	<u>i</u>	Modules documentation	Öffnet Python Dokumentation
Opens the BOA program	=	BOA Constructor	Öffnet das Programm BOA
Opens the wxPython documentation	٠	wxPython documentation	Öffnet wxPython Dokumentation

Beyond the menu can also be switched to the other components of mPLC :

Über das Menü kann auch zu den anderen Bestandteilen von mPLC gesprungen werden:

	Modul	es About	
Subordinated control center	۲	Control Center	Übergeordnetes Control Center
To operate and to observe the CAN monitor	(P)	CAN Monitor	CAN Monitor bedienen und beobachten
Interface program for CAN adapter		Terminal	Schnittstellenprogramm

In the menu "About..." you can find general information about the program. The most important functions are additionally accessible in the symbol bar. Im Menü "About …" finden Sie allgemeine Informationen über das Programm.

Die wichtigsten Funktionen sind in der Symbolleiste zusätzlich erreichbar.

In the lower area you find the output window for the output (e.g. print "Dunker") and error massages ("Messages").

In this way, sample files can be loaded, which are needed (among other things) to search and change the Node_ID and to appoint the Baud_rate.

Assistance

"Baud_rate"

It appears a new field in which the baud rate can be selected (20k, 50k, 100k, 125k, 500k, 800k, 1000k) and set ("SET Baud rate").

This change is only effective after switching off and switching on the motor.

"Firmware"

For a Firmware update please contact the manufacturer!

Each motor type has its own Firmware, which must fit to the appropriate motor!

DANGER !

"Node_ID"

It appears a new field, where the node address can be modified in the range of 1 to 127 ("SET Nodeld"). The modification would be effective only after switching-off and switching-on the motor.

Please refresh the connection accordingly (see "Connection")

NOTICE

Im unteren Bereich befindet sich das Ausgabefenster z.B. für Ausgaben (z.B. print "Dunker") und Fehlermeldungen ("Messages").

Auf diese Weise können Sampledateien geladen werden, die u.a. zum suchen und ändern der Node_ID und zum bestimmen der Baud_rate benötigt werden.

Hilfsmittel

"Baud_rate"

Es erscheint ein neues Feld, in dem die Baudrate gewählt (20k, 50k, 100k, 125k, 500k, 800k, 1000k) und gesetzt werden kann ("SET Baudrate"). Die Änderung wird erst mit dem Aus- und Einschalten des Motors wirksam.

"Firmware"

Bitte wenden Sie sich für ein Firmware-Update an den Hersteller!

Jeder Motortyp hat seine eigene Firmware, die zu dem entsprechenden Motor passen muss!

VORSICHT !

"Node_ID"

Es erscheint ein neues Feld, in dem die Knotenadresse im Bereich von 1 ... 127 geändert werden kann ("SET Nodeld"). Die Änderung wird erst mit dem Ausund Einschalten des Motors wirksam.

Bitte danach die Verbindung erneut herstellen (siehe "Connection")

HINWEIS

"Read-Write-Sdo" Function

After selecting a profile it's possible to read and write SDOs.

In addition you can set a node address or an object (index and sub-index).

In generally the Parameter will be read automatically ("Auto read" active) and manually ("Auto write" inactive) wrote ("Write"). The decimal setpoint can be put in "Tx-Value". The profile can be saved by using "File / Save oder Save as...".

15.7.7 CAN monitor

The CAN monitor is a program to observe and send CAN messages. Thus a CAN transmission can be controlled, supervised, displayed and interpreted.

For CAN objects could be used both CAN-Open PDO- (Process Data Object) and SDO- (Service Data Object), which can be noted then.

On the CD you can find some example files for the CAN monitor.

Menu bar

All settings (CAN-Objekte, -Variable) can be stored in form of a parameter file (*.cm):

Generate a new empty file

Opens an existing file

Safe the current file

Safe the current file under a new name Terminates the CAN monitor

Received massages can be indicated in a separate window:

Display of received CAN objects Display of received CAN variables

View	
16	Receive
1	Receive

File

D)

+

New

Open

Save

Exit

Save as ...

eceived CAN-Objects	Anzeige der em
eceived CAN-Variables	Anzeige der en

Anzeige der empfangenen CAN-Objekte Anzeige der empfangenen CAN-Variablen

Funktion "Read-Write-Sdo"

Nach dem Auswählen eines Profils können nun SDOs gelesen und geschrieben werden. Dazu kann eine Knotenadresse, ein Objekt (Index und Sub-Index) eingestellt werden. Im allgemeinen wird man Parameter automatisch lesen ("Auto read" aktiv) und manuell ("Auto write" nicht aktiv) schreiben ("Write"). Den dezimalen Sollwert trägt man unter "Tx-Value" ein. Das Profil kann über "File / Save oder Save as…" gespeichert werden.

15.7.7 CAN-Monitor

Der CAN Monitor ist ein Programm, um CAN-Nachrichten zu beobachten und zu senden. Damit lässt sich eine CAN-Übertragung steuern, überwachen, darstellen und interpretieren.

Als CAN-Objekte können sowohl CAN-Open PDO-(Process Data Object) als auch SDO- (Service Data Object) Objekte verwendet werden, die dann aufgezeichnet werden können.

Auf der CD finden Sie einige Beispiel-Dateien zum CAN Monitor.

Menüleiste

Alle Einstellungen (CAN-Objekte, -Variable) können in Form einer Parameterdatei (*.cm) gespeichert werden:

Erzeugt eine neue leere Datei Öffnet eine bestehende Datei Speichert die aktuelle Datei Speichert die aktuelle Datei unter einem neuen Name Beendet den CAN-Monitor

Empfangene Nachrichten können in einem separaten Fenster dargestellt werden:

CAN objects can be handled as follows:

CAN-Objekte können folgendermaßen bearbeitet werden:

	Objer	ct	
Prepare a new CAN object	6	New	Anlegen eines neuen CAN-Objektes
Handle with the selected CAN object		Edit	Bearbeiten des ausgewählten CAN-Objekts
Copy the selected CAN object	•	Сору	Kopieren des ausgewählten CAN-Objekts
Delete the selected CAN object		Delete	Löschen des ausgewählten CAN-Objekts

CAN variables can be handled as follows:

CAN-Variable können folgendermaßen bearbeitet werden:

Prepare a new CAN object
Handle with the selected CAN object
Copy the selected CAN object
Delete the selected CAN object

Variable				
	New			
	Edit			
	Сору			
	Delete			

Anlegen einer neuen CAN-Variablen Bearbeiten der ausgewählten CAN-Variable Kopieren der ausgewählten CAN-Variable Löschen der ausgewählten CAN-Variable

Die Reihenfolge von CAN-Objekte und -Variable kann

The order of CAN objects and variables can be changed with this functions:

Sending or receiving CAN messages

abbreviations:

happens either here or with the indicated

This menu configures the Hardware, the

appropriate CAN adapter:

Receiving CAN message, or with ("CTRL + R")

Transmit CAN message, or with ("CTRL + T")

To scroll down the element of a line To scroll up a element of a line

Eleme	ent	
1	Move up	Element eine Zeile nach oben schieben
₽.	Move down	Element eine Zeile nach unten schieben

mit diesen Funktionen verändert werden:

Senden und Empfangen von CAN-Nachrichten geschieht entweder hier oder mit den angegebenen Kürzeln:

CAN-Nachricht empfangen, oder mit "CTRL+R CAN-Nachricht senden, oder mit "CTRL+T"

Dieses Menü konfiguriert die Hardware, den entsprechenden CAN-Adapter:

Beyond the menu can also be switched to the other components of mPLC:

Über das Menü kann auch zu den anderen Bestandteilen von mPLC gesprungen werden:

 Supordinated control center
 Image: Control Center

 To handle and implement with Python Script
 Script

 Interface program for CAN adapter
 Terminal

Übergeordnetes Control Center Python Scripte bearbeiten und ausführen Schnittstellenprogramm für serielle CAN-Adapter

In the menu "About..." you can find general information about the program. The most important functions are additionally accessible in the symbol bar.

Main Window

The Main window is divided in three categories:

- The CAN objects are located in the top of the screen.
- The CAN variables, of the particular objects appear in the middle.
- The status field is located in the lower part.

15.7.8 Terminal

"Terminal" is an interface program for RS232 adapter.

With the Terminal programings respectively program texts of older CAN devices can be visualized. The Terminal offers therefore an assistance for programing to represent compatible older versions (CAN devices).

For the controllers from Dunkermotoren the Terminal is not relevant.

Im Menü "About …" finden Sie allgemeine Informationen über das Programm. Die wichtigsten Funktionen sind in der Symbolleiste zusätzlich erreichbar.

Hauptfenster

Das Hauptfenster ist in drei Bereiche aufgeteilt:

- Im oberen Teil des Bildschirms befinden sich die CAN-Objekte.
- Im mittleren Teil erscheinen die CAN Variable des jeweiligen Objekts.
- Im unteren Teil befindet sich das Statusfeld.

15.7.8 Terminal

"Terminal" ist ein Schnittstellenprogramm für serielle RS232 Adapter.

Mit dem Terminal können Programmierungen bzw. Programmtexte älterer CAN Geräte visualisiert werden. Der Terminal bietet somit eine Hilfestellung um Programmierungen älterer Versionen (CAN Geräte) kompatibel darzustellen.

Für die Regler der Firma Dunkermotoren ist das Teminal nicht von Bedeutung.

_ 🗆 🗙

🐼 mPLC - Terminal

15.7.9 Configuration

The CAN-USB adapter can be configured under "hardware". Normally the configuration is set automatically. If the baud rate of the controller should be changed, also the mPLC settings have to be adapted. If the CAN-USB adapter is attached, its status is indicated green.

15.7.9 Konfiguration

Hier kann unter "Hardware" der CAN-USB Adapter konfiguriert werden. Im allgemeinen geschieht dieses automatisch. Sollte jedoch die Baudrate des Reglers geändert werden, so muss sie auch für mPLC angepasst werden. Ist der CAN-USB Adapter angeschlossen, so wird sein Status mit grün angezeigt.

Config Hardware						×
		USB-C4	AN Interface			
CAN parallel port	Interface-Id	Baudrate	Enabled		Status	•
	i mican-stic	125k 💌		Identify		
	2 not conne	icted 125k 💌		Identify		
	3 not conne	icted 125k 💌		Identify		
	4 not conne	oted 125k 💌		Identify		•
T			ОК		Cancel	

Config Hardware			X
🖃 🐼 mPLC		CAN	Interface
CAN DSB			
Serial port			E V0 Herresoife
	Port	Auto	
	IRQ	Auto 💌	I/O Addresses
	Mode	Auto	Base 0x0000
		,	
			ECR Register 0x0000
	Baudrate	125k 💌	
			OK Cancel

Reference to the serial adapter, alternatively the serial interface:

If your PC/Laptop has a serial interface, it is advisable to deactivate it here.

Hinweis zum seriellen Adapter bzw. zu seriellen Schnittstelle:

Sollte Ihr PC / Laptop über keine serielle Schnittstelle verfügen, ist es ratsam sie in dieser Stelle zu deaktivieren!

Config Hardware						X
E 🐼 mPLC			Serial (RS	(232)		
CAN Parallel port	Default	Interface-Id 100	Com-Nr	Baudrate 9600 💌	Enabled	
▲ ►				ОК	Cancel	

15.8 Objects

In the division "CAN objects", all applied CAN objects are listed.

The following parameters are shown:

•Name •ID •Type	Free-defineable name of the object CAN identification number of the object Kind of the object		
	•RX	receive object	
	•TX	send object	
	•RX PDO	CANopen PDO	
		receive object	
	•TX PDO	CANopen PDO	
		send object	
	•SDO	CANopen PDO	
		service data object	
•Len	Data length	n of the object,	
	08 data bytes (only at TX and TX PDO		
•Data	Data of the TX – object.		
	08 data bytes (only at TX and TX PDO		

15.8.1 Object- / SDO-variable

Depending on to the type of the CAN object, the following variables are in the middle of the main window displayed:

CAN object types RX and RX PDO

Additionally the PDO can be analysed here. According to the PDO-Mappings in the motor all objects can be selected here and assigned to different variables.

Then the following parameters have to be used:

•VarName Free-defineable name of the object Data type of the variable •Type

•bool	Boolean – "0" or "1"
•int8	integer 8 bit
	- 8 bit whole number with signs
•int16	integer 16 bit
	- 16 bit whole number with signs
•int32	integer 32 bit
	- 32 bit whole number with signs
•uint8	unsigned integer 8 bit
	- 8 bit whole number without signs
•uint16	unsigned integer 16 bit
	- 16 bit whole number without sign

16 bit whole number without signs

15.8 Objekte

In dem Bereich "CAN Objects" werden alle angelegten CAN Objekte aufgelistet. Es werden folgende Parameter der Objekte spaltenweise angezeigt:

•Name	freibestimmbarer Name des Objektes	
-------	------------------------------------	--

- •ID CAN Identifikationsnummer des Objektes
- Art des Objektes: •Typ

	•RX	Empfangsobjekt	
	•TX	Sendeobjekt	
	•RX PDO	CANopen PDO	
		Empfangsobjekt	
	•TX PDO	CANopen PDO	
		Sendeobjekt	
	•SDO	CANopen PDO CANopen	
		Service Data Object	
•Len	Datenlänge des Objektes,		
	08 Datenbytes (nur bei TX und TX PDO)		
 Daten 	Daten des 7	ΓX – Objektes,	
	08 Datenb	ytes (nur bei TX und TX PDO)	

15.8.1 Objekt- / SDO-Variable

In Abhängigkeit vom Typ des CAN-Objekts werden im mittleren Bereich des Hauptfensters folgende Variable dargestellt:

CAN Objekt Typen RX und RX PDO

Zusätzlich kann hier das PDO ausgewertet werden. Entsprechend des PDO-Mappings im Motor können hier alle Objekte selektiert und verschiedenen Variablen zugeordnet werden.

Folgende Parameter sind dann zu verwenden:

•VarName freibestimmbarer Name des Objektes Datentyp der Variable •Type

- bool boolean - "0" oder "1"
- int8 integer 8 bit
- 8 bit ganze Zahl mit Vorzeichen integer 16 bit • int16
 - 16 bit ganze Zahl mit Vorzeichen integer 32 bit
- int32 - 32 bit ganze Zahl mit Vorzeichen
- uint8 unsigned integer 8 bit - 8 bit ganze Zahl ohne Vorzeichen
- uint16 unsigned integer 16 bit
 - 16 bit ganze Zahl ohne Vorzeichen

uint32	unsigned	integer 32 bit
--------------------------	----------	----------------

- 32 bit whole	e number without sig	ns
----------------	----------------------	----

•float floating point number

•Byte(s)	byte assignment of the variable inside
	the CAN message
•Factor (a)	multiplier

- •Offset (b) constant, which is added to a result (a*x)
- •Filter MIN minimum value of the filter
- •Filter MAX maximum value of the filter
- •Status transmission status of the variable: OK or an error message

CAN object type SDO

If a CAN object is selected as a SDO, the particular SDOs are defined here.

•VarNam	e Free	-assignable name of the object			
•Index The		index of the variable in the CANopen			
	reais	ster			
•Sub ind	lex The	sub index of the variable in the			
	CAN	lopen register			
•Type	Data ty	pe of the variable			
	•bool	Boolean - "0" or "1"			
	•int8	integer 8 bit			
		- 8 bit whole number with signs			
	•int16	integer 16 bit			
		- 16 bit whole number with signs			
	•int32	integer 32 bit			
		- 32 bit whole number with signs			
	•uint8	unsigned integer 8 bit			
		 8 bit whole number without signs 			
	•uint16	unsigned integer 16 bit			
		- 16 bit whole number without signs			
	•uint32	2 unsigned integer 32 bit			
		- 32 bit whole number without signs			
	•float	floating point number			
•Tv\/alua	y Valu	e of the variable, which can be			
•IXValue valu		e of the variable, which can be			
•RxValue	□ Valu	e of the variable, which can be			
raca		ived			
•Status	Tran	smission status of the variable.			
314140	OK	or an error message			

CAN object types TX and TX PDO SDO

Here are no separate variables, because the data are sent directly from the PC to the controller.

- •uint32 unsigned integer 32 bit
 - 32 bit ganze Zahl ohne Vorzeichen
 float Fließkomma-Zahl
- •Byte(s) Bytebelegung der Variable innerhalb der CAN Nachricht
- •Factor (a) Multiplikator
- •Offset (b) Konstante, die zu dem Ergebnis (a * x) addiert wird
- •Filter MIN Minimumwert des Filters
- •Filter MAX Maximumwert des Filters
- •Status Übertragungsstatus der Variable: OK oder eine Fehlermeldung

CAN Objekt Typen SDO

Wird als CAN Objekt ein SDO gewählt, werden hier die einzelnen SDO definiert:

- •VarName freibestimmbarer Name der Variable
- •Index Index der Variable im CANopen Verzeichnis
- •Subindex Subindex der Variable im CANopen Verzeichnis
- •Type Datentyp der Variable
 - •bool boolean "0" oder "1"
 - •int8 integer 8 bit
 - 8 bit ganze Zahl mit Vorzeichen •int16 integer 16 bit
 - 16 bit ganze Zahl mit Vorzeichen
 - •int32 integer 32 bit
 - 32 bit ganze Zahl mit Vorzeichen•uint8 unsigned integer 8 bit
 - 8 bit ganze Zahl ohne Vorzeichen •uint16 unsigned integer 16 bit
 - 16 bit ganze Zahl ohne Vorzeichen •uint32 unsigned integer 32 bit
 - 32 bit ganze Zahl ohne Vorzeichen •float Fließkomma-Zahl
- •**TxValue** Wert der Variable, die gesendet werden kann
- •RXValue Wert der Variable, die empfanden werden kann
- •Status Übertragungsstatus der Variable: OK oder eine Fehlermeldung

CAN Objekt Typen TX und TX PDO SDO

Da hier Daten direkt vom PC an den Regler geschickt werden, gibt es keiner gesonderten Variablen.

15.8.2 Setup CAN objects

The yellow symbols can be used to setup CAN objects (see above).

With the first "New CAN object" you generate a new object, with the next "Edit CAN object" you can modify, the third "Copy CAN object" duplicates and the last deletes an object.

For generating a service data object select under "CANopen" at first "SDO", assign then a name ("Obj. Name") and lastly a node address "Node-ID" The rest of the fields are not required.

There are 2 possibilities for disposing PDOs: After "New CAN object" the COB ID can be registered immediately (without choosing SDO or PDO). The second possibility is to select "PDO" in connection with the indication of the node address and the PDO type. The COB ID will be calculated. The following pre-defined offsets are available:

•"digital IN"

=> COB-ID 181h (Node-ID1)... 1FFh (Node-ID 127) •...digital OUT" => COB-ID 201h (Node-ID1)... 27Fh (Node-ID 127) •"analog IN" => COB-ID 281h (Node-ID1)... 2FFh (Node-ID 127) .analog OUT" => COB-ID 301h (Node-ID1)... 37Fh (Node-ID 127) "Emergency" => COB-ID 81h (Node-ID1) ... FFh (Node-ID 127) •"Guard" => COB-ID 701h (Node-ID1)... 37Fh (Node-ID 127) (NMT Error Control) •"NMTO" => COB-ID 0h •"SYNC" => COB-ID 80h

•"Time Stamp"

=> COB-ID 100h

By selecting "TX PDO" it is specified that the PDO is sent by the PC (TX PDO).

In this case the length of the data and the data itself can be supplied.

The datas can be supplied either in hexadecimal form (0x20) or decimal form (32).

If "TX PDO" is not selected, then it is a PDO (RX PDO). The input of further data is not applicable.

15.8.2 Anlegen von CAN-Objekte

Zum Anlegen von CAN-Objekten können die gelben Symbole verwendet werden (s.o.).

Mit dem ersten "New CAN-Objekt" erzeugen Sie ein neues Objekt, mit dem nächsten "Edit CAN-Object" nehmen Sie Änderungen vor, das dritte "Copy CAN-Object" dupliziert und das letzte löscht ein Objekt.

Zum Anlegen eines SDOs wählen Sie unter "CA-Nopen" zunächst "SDO" an, vergeben dann einen Namen ("Obj. Name") und zuletzt die Knotenadresse "Node-ID". Die restlichen Felder werden nicht benötigt.

Zum Anlegen eines PDOs gibt es zwei Wege: Nach "New CAN-Object" kann sofort die COB-ID eingetragen werden (ohne SDO oder PDO auszuwählen). Die zweite Variante ist das Auswählen von "PDO" in Verbindung mit der Angabe der Knotenadresse und des PDO-Typs. Dabei wird die Cob-Id berechnet. Hierbei stehen folgende vordefinierten Offsets zur Verfügung:

•"digital IN"

=> COB-ID 181h (Node-ID1) ... 1FFh (Node-ID 127) •...digital OUT" => COB-ID 201h (Node-ID1) ... 27Fh (Node-ID 127) •"analog IN" => COB-ID 281h (Node-ID1) ... 2FFh (Node-ID 127) ...analog OUT" => COB-ID 301h (Node-ID1) ... 37Fh (Node-ID 127) •"Emergency" => COB-ID 81h (Node-ID1) ... FFh (Node-ID 127) •"Guard" => COB-ID 701h (Node-ID1) ... 37Fh (Node-ID 127) (NMT Error Control) •"NMT0" => COB-ID 0h •"SYNC" => COB-ID 80h •"Time Stamp" => COB-ID 100h

Durch Anwählen von "TX PDO" wird festgelegt, dass das PDO vom PC gesendet wird (TX PDO). In dem Fall kann die Länge der Daten und Daten an sich eingegeben werden. Die Daten können dabei entweder in hexadezimaler (0x20) oder dezimaler Form (32) eingetragen werden. Ist "TX PDO" nicht angewählt, handelt es sich um ein Empfangs-PDO (RX PDO), so dass die Eingabe von weiteren Daten entfällt. Advice for PDOs:

Only the definitions for the CAN monitor are adjusted here. The appropriate PDO-Mappings for the controller are to be adjusted separately.

15.8.3 Setup CAN variables

CAN object type PDO

With this variable single bytes of a PDO can be selected, filtered and scaled. The following parameters can be adjusted:

•VarName Free-assignable name of the object •Data type Data type of the variable

	•bool	Boolean – "0" or "1"	
	•int8	integer 8 bit - 8 bit whole number with signs	
	•int16	integer 16 bit	
	•int32	integer 32 bit	
	•uint8	unsigned integer 8 bit	
	•uint16	 - 8 bit whole number without signs unsigned integer 16 bit - 16 bit whole number without signs 	
	•uint32	unsigned integer 32 bit	
Durtes	•float	floating point number	-
•Repres	 Byte as CAN m E.g. a 3 which of (MSB = Also an is poss have 2 Byte 0. Sentation Determ for the (float, e ion Depend this fiel spent v the nur position 	<pre>signment of the variable in the nessage 32 bit value have 4 bytes, could assign in PDO Byte 03 = 3, LSB = 0) exchange of Low and High bytes ible: e.g. a 16 bit value bytes, which allocate in PDO 1 (MSB = 03, LSB = 1) n format ninate the representation format expended value exponent, integer or hex). ding on the representation format d determinates either the number of values (exponent, integer, hex) or nber of right-of-comma ns (float).</pre>	•C

Hinweis für PDOs:

Hier werden lediglich die Festlegungen für den CAN Monitor getroffen. Die entsprechenden PDO-Mappings für den Regler sind noch separat zu treffen.

15.8.3 Anlegen von CAN-Variablen

CAN Objekt Type PDO

Mit dieser Variable lassen sich aus einem PDO einzelne Bytes selektieren, filtern und skalieren. Folgende Parameter können eingestellt werden:

•VarName freibestimmbarer Name der Variable •Datentyp Datentyp der Variable

• bool	boolean - "0" oder "1"

- int8 integer 8 bit - 8 bit ganze Zahl mit Vorzeichen
- int16 integer 16 bit
- 16 bit ganze Zahl mit Vorzeichen• int32 integer 32 bit
- 32 bit ganze Zahl mit Vorzeichen • uint8 unsigned integer 8 bit
 - 8 bit ganze Zahl ohne Vorzeichen
- uint16 unsigned integer 16 bit - 16 bit ganze Zahl ohne Vorzeichen
- uint32 unsigned integer 32 bit - 32 bit ganze Zahl ohne Vorzeichen
- float Fließkomma-Zahl

Byte(s)

- Bytebelegung der Variable in der CAN Nachricht
- z. B. eine 32 Bit Wert hat 4 Bytes, die im PDO Byte 0...3 belegen könnte (MSB = 3, LSB = 0)
- Auch ein vertauschen von Low und High Byte ist damit möglich: z.B. ein 16 Bit Wert hat 2 Byte, die im PDO Byte 0 ... 1 belegen (MSB = 03, LSB = 1)

•Darstellungsformat (Representation)

- Legt das Darstellungsformat der ausgegebenen Werte fest (float, exponent, integer oder hex).
- •Präzision (Precision)
 - •Je nach Darstellungsformat bestimmt dieses Feld entweder die Anzahl der ausgegebenen Stellen (exponent, integer, hex) oder Anzahl der Nachkommastellen (float).

•Filter active

- · Switching on or switching off the value filter
- Kind of the filter (Prohibitive)
 Not activated: Only values are collected/ recorded, which are inside of the
- boundary. Min <= Y <= max
 Activated: Only values are collected/ recorded, which are outside of the
- boundary. Y < min or > max
- min
- Minimal value of the filter
- max
 - Maximal value of the filter
- •a scaling factor

۰b

- constant, which would
- be added to an result (a*X)
- •Y = a * x + b wheras:
- Y result
- X value of the CAN message
- a scaling factor
- b offset

CAN object type SDO

With this variable SDOs can be read and written. The following parameters can be adjusted:

•VarName Free •Index The CAN		e-assignable name of the variable index of the variable in the Nopen register		
•Subindex	The CAN	sub index of the variable in the lopen register		
•Data type	Data	type of the variable		
۰bo	ool	Boolean – "0" or "1"		
۰in	t8	integer 8 bit - 8 bit whole number with signs		
• in	t16	integer 16 bit		
• in	t32	- 10 bit whole number with signs integer 32 bit - 32 bit whole number with signs		
• ui	nt8	unsigned integer 8 bit		

- 8 bit whole number without signs
 uint16 unsigned integer 16 bit

 16 bit whole number without signs
- uint32 unsigned integer 32 bit
 - 32 bit whole number without signs • float floating point number
- •**TxValue** Value of the variable, which can be sent

 RxValue 	Value of the variable, which can
	be received
•Status	Transmission status of the variable:

•Filter (Filter Active)

- Einschalten oder Ausschalten des Wertfilters
- Art des Filters (Prohibitive)

Nicht aktiviert: Es werden nur Werte erfasst / protokolliert, die innerhalb der Grenzen liegen. min <= Y <= max

- Aktiviert: Es werden nur Werte erfasst / protokolliert, die außerhalb der Grenzen liegen. Y < min oder Y > max
- min
 - min. Wert des Filters
 - max
 - max. Wert des Filters
- •a Skalierungsfaktor
- •**b** Konstante, die zu dem Ergebnis (a * X) addiert wird.
 - •Y = a * x + b wobei:
 - Y Ergebnis
 - x Wert von der CAN Nachricht
 - a Skalierungsfaktor
 - b Offset

CAN Objekt Type SDO

Mit dieser Variable lassen sich SDOs lesen und schreiben. Folgende Parameter können eingestellt werden:

- •VarName freibestimmbarer Name der Variable
- •Index Index der Variable im CANopen Verzeichnis
- •Subindex Subindex der Variable im CANopen Verzeichnis
- •Type Datentyp der Variable

• bool boolean - "0" oder "1"

- int8 integer 8 bit - 8 bit ganze Zahl mit Vorzeichen
- int16 integer 16 bit
 - 16 bit ganze Zahl mit Vorzeichen integer 32 bit
- int32 integer 32 bit - 32 bit ganze Zahl mit Vorzeichen
- uint8 unsigned integer 8 bit
- 8 bit ganze Zahl ohne Vorzeichen • uint16 unsigned integer 16 bit
- 16 bit ganze Zahl ohne Vorzeichen
- uint32 unsigned integer 32 bit
 - 32 bit ganze Zahl ohne Vorzeichen
- float Fließkomma-Zahl
- •TxValue Wert der Variable, die gesendet werden kann
- •RXValue Wert der Variable, die empfanden werden kann
- •Status Übertragungsstatus der Variable:

OK or an error message

15.8.4 Transmit / Receive

With the CAN monitor CAN messages can be transmitted (PC => controller) and received (PC <= controller). In addition the desired object or the desired variable must be selected:

• Receive: With "CTRL + R" (Receive) or

Transmit: With "CTRL + T" (Transmit) or

14

I

OK oder eine Fehlermeldung 15.8.4 Senden, Empfangen

Mit dem CAN Monitor können CAN-Nachrichten gesendet (PC => Regler) und empfangen (PC <= Regler) werden. Dazu muss das gewünschte Objekt oder die gewünschte Variable angewählt werden:

• Empfangen: Mit "CTRL + R" (Receive) oder

• Senden: Mit "CTRL + T" (Transmit) oder

15.8.5 Recording

Received messages can be displayed and recorded in a separate window (see menu "View").

15.8.5 Aufzeichnen

Empfangene Nachrichten können in einem separaten Fenster dargestellt und aufgezeichnet werden (s. Menü "View").

Display of the received CAN objects Display of the received CAN variables

View Received CAN-Objects Received CAN-Variables

Anzeige der empfangenen CAN-Objekte Anzeige der empfangenen CAN-Variablen

Aufzeichnen von CAN-Objekten

Recording CAN objects

🔯 mPLC - RX CAN-Objects					_ 0	X
0bj 🔒 🔒 隆 🖓 📴 🖈	cord all Scroll					
Name	Cob-ID	Time Stamp	Counter	Data HEX		
Show Act Position	385 (181h)	22583.649,610	148699	F2 FF FF FF	AD 01	
Show Act Position	385 (181h)	22583.669,580	148700	F2 FF FF FF	AC 01	
Show Act Position	385 (181h)	22583.689,580	148701	F2 FF FF FF	AC 01	
Show Act Position	385 (181h)	22583.709,520	148702	F2 FF FF FF	AC 01	
Show Act Position	385 (181h)	22583.729,580	148703	F2 FF FF FF	AD 01	
Show Act Position	385 (181h)	22583.749,490	148704	F2 FF FF FF	AC 01	
Show Act Position	385 (181h)	22583.769,510	148705	F2 FF FF FF	AD 01	
Show Act Position	385 (181h)	22583.789,560	148706	F2 FF FF FF	AD 01	
Show Act Position	385 (181h)	22583.809,640	148707	F2 FF FF FF	AD 01	
Show Act Position	385 (181h)	22632.511,680	150500	F2 FF FF FF	AD 01	

 Name name of the variable Cob-ID Cob-ID of the received objects (decimal and hexadecimal) Time Stamp Time stamp in ssss.mmm,uuu (s: seconds, m: ms, u: μs) Counter There is a separate counter for each variable Data HEX Byte by byte in hexadecimal form (the structure is addicted from the PDO-Mapping in the motor) 	•Name •Cob-ID •Time Stamp •Counter •Data HEX	Name der Variable Cob-ld der empfangenen Objekte (dezimal und hexadezimal) Zeitstempel in ssss.mmm,uuu (s: Sekunden, m: ms, u: µs) Für jede Variable gibt es einen separaten Zähler Byteweise Daten in hexadezimaler Form (der Aufbau ist abhängig vom PDO-Mapping im Motor)
---	--	---

Die empfangenen Objekte lassen sich als

"Log – RX-Objects"-Datei speichern (bzw. speichern

daher nicht nur mit mPLC sondern auch mit jedem

anderen Text-Editor öffnen und weiterbearbeiten.

unter). Diese Dateien (*.lgo) haben ASCII-Format und

The received objects can be stored as "Log_RX-objects"(e.g. save as ...) These files are in ASCII format (*.lgo). Therefore that files can be opened and further executed in every other text editor.

•"Safe List" Stores the list •"Save List" Speichert die Liste •"Safe List as..." Speichert die Liste unter Stores the list under an •"Save List as …" anderem Namen other name •"Delete List" Löscht die gesamte Liste Deletes the complete list •"Delete List" •"Set Time Origin" Sets the current value of the •"Set Time Origin" Setzt den aktuellen Wert des time stamp to zero and Zeitstempels auf Null und "older" time stamps to relative, damit "ältere" Zeitstempel auf negative values. relative, negative Werte •"Delete Time Origin"Putting back above •"Delete Time Origin"Setzt o.g. Nullpunkt wieder mentioned zero point zurück Setzt einen Zähler auf Null •"**1234** = **0**" •...**1234=0**" Sets a counter to zero •"Record All" If this Button is activated Ist dieser Button aktiviert •"Record all" (see picture) all data are (s. Bild) werden alle Daten recorded and can be stored. aufgezeichnet und können If this function is not gespeichert werden. Ist diese Funktion nicht aktiviert, wird activated, only the last value is recorded alternatively nur der letzte Wert stored. aufgezeichnet, bzw. gespeichert. If this button is activated (see Ist dieser Button aktiviert "Scroll" •"Scroll" picture) the end of the list, the (s. Bild) wird automatisch das current line, are automatically Ende der Liste, die aktuelle indicated. Zeile, angezeigt.

Recording CAN variable

Aufzeichnen von CAN-Variable

Jame	Value	Time Stamp	Counter
Cemperatur in °C	42.2	2166.303,062	8782
osition in mm	18.250	2166.323,112	8793
Cemperatur in °C	42.2	2166.323,112	8783
osition in mm	18.250	2166.343,142	8794
Cemperatur in °C	42.2	2166.343,142	8784
osition in mm	18.250	2166.363,062	8795
Cemperatur in °C	42.2	2166.363,062	8785

Name	name of the variable	•Name	Name der Variable
Value	value of the variable	•Value	Wert der Variable
	(including a possible scaling)		(inklusive einer möglichen
			Skalierung)
 Time Stamp 	Time stamp in ssss.mmm,uuu	 Time Stamp 	Zeitstempel in ssss.mmm,uuu
	(s: seconds, m: ms, u: μs)		(s: Sekunden, m: ms, u: μs)
•Counter	There is a separate counter for each variable	•Counter	Für jede Variable gibt es einen separaten Zähler

The received objects can be stored as "Log_RX-Variables". These files are in ASCII format (*.lgo). Therefore that files can be opened and further executed in every

other text editor.

•"Safe List" •"Safe List as"	Stores the list Stores the list under an other	•"Save Li •"Save Li
•"Delete List" •"Set Time Origin"	Deletes the complete list Sets the current value of the time stamp to zero and "older" time stamps to relative, penative values	•"Delete I •"Set Tim
•"Delete Time Origin	n"Putting back above mentioned zero point	•"Delete 1
•"1234 = 0" •"Record All"	Sets a counter to zero If this Button is activated (see picture) all data are recorded and can be stored. If this function is not activated, only the last value is recorded, alternatively stored.	•"1234=0' •"Record
•"Scroll"	If this button is activated (see picture) the end of the list, the current line, are automatically indicated.	•"Scroll"

Die empfangenen Objekte lassen sich als "Log – RX-Objects"-Datei speichern (bzw. speichern unter). Diese Dateien (*.lgo) haben ASCII-Format und daher nicht nur mit mPLC sondern auch mit jedem anderen Text-Editor öffnen und weiterbearbeiten.

•"Save List" • Save List as "	Speichert die Liste
"Save List as	anderem Namen
•"Delete List" •"Set Time Origin"	Löscht die gesamte Liste Setzt den aktuellen Wert des Zeitstempels auf Null und damit "ältere" Zeitstempel auf relative, negative Werte
•"Delete Time Origi	n"Setzt o.g. Nullpunkt wieder
	zurück
•"1234=0"	Setzt einen Zähler auf Null
•"Record all"	Ist dieser Button aktiviert (s. Bild) werden alle Daten aufgezeichnet und können gespeichert werden. Ist diese Funktion nicht aktiviert, wird nur der letzte Wert
	aufgezeichnet, bzw.
•"Scroll"	gespeichert. Ist dieser Button aktiviert (s. Bild) wird automatisch das Ende der Liste, die aktuelle Zeile, angezeigt.

15.9 CAN master of other manufacturer

Also CAN masters of other manufacturers can be used, as long as they conform to the CANopen standard of the CIA.

For the first commissioning of the controller the following base settings have to be carried out:

Node ID:	127
Baudrate:	125 kBaud

15.9 CAN-Master anderer Hersteller

Alle anderen CAN-Master anderer Hersteller können ebenfalls verwendet werden, solange sie dem CANopen-Standard der CIA entsprechen. Für die Erstinbetriebnahme des Reglers sind dort lediglich die folgenden Grundeinstellungen vorzunehmen:

Knotenadresse: 127 Baudrate: 125 kBaud

15.10 Communication settings

The controller have to be connected separately (not in the CAN network) to a master (PC). For the first communication, the parameters at the master must be adjusted to the factory settings of the controller in order to enable the first communication. The use of the provided CAN monitor or the mPLC is recommended.

The following factory settings are available on delivery:

Baudrate: 125 kBaud Node ID: 127

After the communication with the controller is assembled, there are two possibilities to change Node ID and Baudrate, which are described below. In the case of use the Starter-Kit Tools (mPLC and USB-CAN-Adapter) are available, which support this adjustment.

15.10.1 Standard variant – LMT services

These services are accorded to CIA in the LMT Service Specification DS205/1 implement and require an LMT able master. Only the mode "Switch mode Global" is available, wherefore only one controller should be connected at CAN master.

In this mode the communication parameters of all participants are changed (global).

The service "Switch mode Selective" is not implemented.

15.10 Kommunikationseinstellungen

Der Regler ist einzeln (nicht im CAN- Netzwerk) an einen Master (PC) anzuschließen. Die Kommunikationsparameter am Master müssen auf die Werkseinstellungen des Reglers eingestellt werden, damit die erste Kommunikation aufgebaut werden kann. Es wird die Verwendung des zur Verfügung stehenden CAN-Monitors oder das mPLC empfohlen. Im Auslieferungszustand sind folgende Werkseinstellungen vorhanden:

Baudrate : 125 kBaud Node-Id : 127

Nachdem die Kommunikation mit dem Regler hergestellt ist, stehen zum Ändern der Node-Id und der Baudrate zwei prinzipielle Möglichkeiten zur Verfügung, die unten beschrieben werden. Bei Verwendung des Starter-Kits (mOLC und USB-CAN-Adapter) stehen Tools zur Verfügung, die diese Anpassung erleichtern.

15.10.1 Standardvariante - LMT Dienste

Diese Dienste sind entsprechend CIA in der LMT Service Specification DS205/1 implementiert und erfordern einen LMT-fähigen Master. Es steht nur die Funktion "Switch mode Global" zur Verfügung, weshalb nur ein Regler am CAN- Master angeschlossen sein sollte. In diesem Modus werden die Kommunikationsparameter aller Teilnehmer geändert (Global). Der Dienst "Switch Mode Selective" ist nicht implementiert.

15.10.2 Manufacturer-specific variant

This variant is more convenient for the first commissioning.

Utilisation of mPLC

•Open and starting the example Script "Nodeld_Scan.py", in order to find the node address of the controller

•Open the example Script

"Nodeld_Change.py",

there enter the desired node address and start this Script.

Open the example Script

"Baudrate_Change.py", there enter the desired index of the Baudrate (see documentation in the Script) and start this Script.

Afterwards the Baudrate has also to be changed in the Drive Assistant!

NOTICE

Diese Variante ist für die Erstinbetriebnahme besser geeignet.

Verwendung von mPLC

•Öffnen und Starten des Beispiels Scripts "Node-Id_Scan.py", um die Knotenadresse des Reglers zu finden

•Öffnen des Beispiels Scripts

"Node-Id_Change.py",

dort die gewünschte Knotenadresse eintragen und dieses Script starten.

•Öffnen des Beispiels Scripts

"Baudrate_Change. py",

dort die gewünschten Index der Baudrate (s. Dokumentation im Script) eintragen und dieses Script starten.

Danach ist die Baudrate von mPLC ebenfalls zu ändern!

HINWEIS

The changes become only effective after switching off and switching on the controller!

Die Änderungen werden erst nach Aus- und Einschalten des Reglers wirksam!

Utilisation of other CAN masters

In order to change the node address and the Baudrate, the SDO (Service-Data-Object) 0x2000 is available, which is to be described as follows:

•Changing the node address

Verwendung eines anderen CAN-Masters

Um die Knotenadresse und die Baudrate zu ändern, steht das SDO (Service-Daten-Objekt) 0x2000 zur Verfügung, das folgendermaßen zu beschreiben ist:

•Ändern der Knotenadresse:

Schritt	Index	Subindex	Wert	Bemerkung
1	2000	1	0x6E657277	Schreiben aktivieren
2	2000	2	Node-Id	Neue Knotenadresse setzen

•Changing Baudrate

•Ändern der Baudrate:

Schritt	Index	Subindex	Wert	Bemerkung
1	2000	1	0x6E657277	Schreiben aktivieren
2	2000	2	Index der Baudrate	Neue Baudrate setzen

Baudrate	1M	800k	500k	250k	125k	100k	50k	20k	10k
Index	0	1	2	3	4	5	6	7	8

Changes become only effective after switching off and switching on the controller!

NOTICE

When changing the Baudrate the master has also to be configured accordingly!

Die Änderungen werden erst nach Aus- und Einschalten des Reglers wirksam!

HINWEIS

Beim Ändern der Baudrate ist der Master ebenfalls entsprechend zu konfigurieren!

15.11 Test programs and other assistance

The StarterKit CD provides further examples, e.g. motor configuring, position control, speed- or current control, PDO Mapping.

That can be implemented directly under mPLC. In addition you find also appropriate CAN monitor files in order to control the CAN bus.

All manufacturer-specific objects are documented in the Help data file of the object list.

15.11 Testprogramme und weitere Hilfsmittel

Auf der Startkit-CD finden Sie weitere Beispiele, z.B. Motorkonfigurierung, Positionssteuerung, Geschwindigkeits- oder Stromregelung, PDO-Mapping. Diese können unter mPLC direkt ausgeführt werden. Dazu finden Sie auch entsprechende CAN-Monitor-Dateien, um den CAN-Bus zu kontrollieren.

Alle herstellerspezifischen Objekte sind in der Hilfe-Datei des Objektverzeichnisses dokumentiert.

16 Maintenance & Service

16.1 Maintenance, decommisioning and disposal

Maintenance: the Positioning Controller requires no maintenance.

Decommissioning:

Attention!

The safety instructions MUST be read and observed prior to taking the unit out of service!

Disposal: taking the controller out of service (see above). When disposing of scrap electrical equipment, the specific disposal regulations and environmental directives of the country or region you are in must be observed.

16.2 Service & support

If questions or problems arise, the following contacts are available to help:

- Your representative
- Your Dunkermotoren Key Account Manager
- Our support department for hardware
- Our support department for software

Or visit our Support-Online portal at www.dunkermotoren.com/support.

A PDF-file containing these operating instructions and further information is available to you at

www.dunkermotoren.de/downloads.

Dunkermotoren GmbH Allmendstrasse 11 D-79848 Bonndorf Tel.: +49 7703 930-0 Fax: +49 7703 930-210 info@dunkermotoren.de

16 Wartung & Service

16.1 Wartung, Ausserbetriebsetzung und Entsorgung

Wartung: Die Positioniersteuerung benötigt keine Wartung.

Ausserbetriebsetzung:

Achtung! Vor der Ausserbetriebnahme sind unbedingt die Sicherheitshinweise zu lesen und zu beachten!

Entsorgung: Setzen Sie die Steuerung ausser Betrieb (s.o.). Bei der Entsorgung von Elektroschrott sind die spezifischen Entsorgungsvorschriften und Umweltrichtlinien des jeweiligen Landes zu beachten.

16.2 Service & Support

Bei Fragen und Problemen stehen Ihnen folgende Ansprechpartner zur Verfügung:

- Ihre zuständige Vertretung
- Ihr zuständiger Dunkermotoren Key Account Manager
- Unsere Supportabteilung für Hardware
- Unsere Supportabteilung für Software

Besuchen Sie auch unser Support-Onlineportal unter www.dunkermotoren.de/support.

Die PDF-Datei dieser Betriebsanleitung und weitere Informationen stehen für Sie im Internet unter

www.dunkermotoren.de/downloads bereit.

Dunkermotoren GmbH Allmendstrasse 11 D-79848 Bonndorf Tel.: +49 7703 930-0 Fax: +49 7703 930-210 info@dunkermotoren.de

16.3 Scope of supply and accessories

As quoted

16.4 Download PDF-Data

www.dunkermotoren.de

16.3 Lieferumfang und Zubehör

Wie angegeben

16.4 Download PDF-Daten

www.dunkermotoren.de

Representatives and Distributors / Vertretungen und Vertriebsgesellschaften

Germany

Sachsen-Anhalt Nord, Berlin, Brandenburg **Dunkermotoren GmbH** Allmendstraße 11 · 79848 Bonndorf Tel. (07703) 930-0 · Fax -210/212 www.dunkermotoren.com info@dunkermotoren.de

Niedersachsen, Hessen Nord, Westfalen Ost Ingenieurbüro Heinrich Jürgens Roggenhof 5 - 31787 Hameln Tel. (05158) 980-98 - Fax 99 ingenieurbuero.juergens@real-net.de

Hamburg/Bremen, Schleswig-Holstein, Niedersachsen Nord, Mecklenburg Vorpommern **Technisches Büro Kühling/Merten** Redder 1 B · 22393 Hamburg Tel. (040) 5234098 · Fax (040) 5282476 www.kuehling-merten.de · km@kuehling-merten.de

Ruhrgebiet Lothar Amborn Fasanenstrasse 21b · 45134 Essen-Stadtwald Tel. (0201) 4435-00 · Fax 01 lothar.amborn@t-online.de

Rheinland ATS Antriebstechnik Schlote Reisertstrasse 10 - 53773 Hennef Tel. (02242) 90415-90 - Fax -99 o.schlote@antriebstechnik-nrw.de

Hessen Antriebstechnik Eberhardt GmbH Landgrabenstrasse 21 · 61118 Bad Vilbel Tel. (06101) 98168-0 · Fax · 10 www.antriebstechniken.de/eberhardt info@ategmbh.de

Bayern Nord, Sachsen, Thüringen,

Sachsen-Anhalt Süd Christleven GmbH Ingenieurbüro für Elektrotechnik Preuschwitzerstr. 38 · 95445 Bayreuth Tel. (0921) 41360 · (0921) 7413684 Fax (0921) 46192 www.christleven.de · info@christleven.de

Bayern Süd Antriebstechnik Quin GmbH Herr Ferdinand Quin Lärchenstrasse 1 - 85604 Zorneding Tel. (08106) 2471-70 - Fax -71

www.atq.de · info@atq.de Württemberg **Technisches Büro Späth** Eschenbrünnlestr. 16 · 71065 Sindelfingen Tel. (07031) 794 34-60 · Fax -70

www.spaeth-technik.de · tb.spaeth@t-online.de Nordbaden, Rheinland-Pfalz, Saarland

Dunkermotoren GmbH Andreas Rau Postfach 11 11 13 · 76061 Karlsruhe

Tel. (0721) 830 1021 · Fax (0721) 830 1035 andreas.rau@dunkermotoren.com

Südbaden

Dunkermotoren GmbH Allmendstrasse 11 · 79848 Bonndorf Tel (07703) 930-0 · Fax (07703) 930-210 info@dunkermotoren.com

Europe and Overseas

Austria **Dunkermotoren Division of Alcatel-Lucent** Stefan Rozic Verkaufsleiter Österreich Raimundstr. 6 · 4053 Haid/ Ansfelden Tel. +43 7229 91054 · Fax +43 7229 91054 sales.at@dunkermotoren.com

Belgium / Luxembourg Elmeq B.V.B.A. Industrial Zone Beveren-Noord Onledegoedstraat 79 · 8800 Roeselare Tel. +32 51 25 98-11 · Fax -18 www.elmeq.be · info@elmeq.be

China Alcatel Vacuum Technology No. 82, Lane 887 · Zuchongzhi Road Zhangjiang Hi-Tech Park · Shanghai 201203 Tel. +86 21 5027 0628-125 Fax +86 21 3895 3815

Sasa.Dobrosavljevic@dunkermotoren.com **Dunkermotoren Taicang Co., Ltd** No. 9 Factory Premises - 55 North - Dongting Road Taicang Economy Area - Taicang 215400 Jiangsu Province Tel. +86 512 8889 8889-701 - Fax +86 512 8889 8890 sales.cn@dunkermotoren.com

Czech Republik Schmachtl CZ s.r.o. Vestec 185 · 25242 Jesenice Tel. +42 02 44 00 15 00 · Fax +42 02 44 91 07 00 www.schmachtl.cz · office@schmachtl.cz

Denmark **Compower A/S** Smedeholm 13A · 2730 Herlev Tel. +45 44 92 66-20 · Fax +45 44 92 66-02 www.compower.dk · info@compower.dk

Finland **Wexon OY** Juhanilantie 4 · 01740 Vantaa Tel. +358 9 290 440 · Fax +358 9 290 44100 www.wexon.fi · wexon@wexon.fi France

MDP 21 Porte du Grand Lyon, Neyron 01707 Miribel Cédex Tel. +33 4 72 01 83 00 · Fax +33 4 72 01 83 09 www.mdp.fr · contact@mdp.fr

Great Britain Dunkermotoren UK, Division of AVT

Kingfisher House · Suite 2 · Rownhams Lane North Baddesley · Southampton · Hants · SO52 9LP Tel. +44 23807 33509 · Fax +44 23807 34237 sales.uk@dunkermotoren.com

Israel Avi Sasson Representatives P.O. Box 9270 · 61091 Tel Aviv Tel • 672 3 5 01 52 22 · 5ex • 672 3 5 02 18 9

Tel. +972 3 5 01 53 22 · Fax +972 3 5 03 19 86 asr@asr.co.il Italy

Dunkermotoren Italia, Division of AVS Corso Sempione, 221 · I-20025 Legnano MI Tel. +39 0331-596165 · Fax +39 0331-455086 sales.it@dunkermotoren.com

Korea Alcatel Vacuum Technology Korea

#447, Banwol-dong, Hawsung-si, Kyungki-do, 445-330 Tel. +82 31 206 6277 · Fax +82 31 204 6279 junghoon.myoung@dunkermotoren.com

Netherlands ERIKS Aandrijftechniek bv

Tel: +31 182 30 34 56 · Fax +31 182 38 69 20 www.eriks-at.nl · info.schoonhoven@eriks-at.nl

Norge **Stork AS** Brynsveien 100 · 1352 Kolsås Tel. +47 67 17 64-00 · Fax -01 www.stork.no · stork@stork.no Poland PPH. WOBIT Witold Ober - ul. Gruszkowa 4 PL 61-474 Poznan Tel. +48 61 8350-800 · Fax -704 www.wobit.com.pl · witold@wobit.com.pl

Slovakia Schmachtl SK, s.r.o. Valchárska 3 · 82109 Bratislava Tel. +421 2 582756-00 · Fax -01 www.schmachtl.sk · office@schmachtl.sk Spain

Elmeq S.L. (Gran Via Center) - C/Vilamarí 50, 3° A y B 08015 Barcelona Tel. +34 9422 70 33 · Fax +34 93 432 36 60 www.elmeq.es · contacto@elmeq.es

Sweden DJ Stork Drives AB Box 1037 · Vretenvägen 4 A, Solna SE-172 21 Sundbyberg Tel. +46 8 635 60-00 · Fax -01 www.storkdrives.se · info@storkdrives.se

Switzerland PLZ 40-44, 46-49, 5-9 **Dunkermotoren Division of HVT** Rolf Leitner Verkaufsleiter Schweiz Postfach 307 · 8018 Oetwil am See Tel. +41 44 799 17-71 · Fax -75 sales.ch@dunkermotoren.com

PLZ 1, 2, 3, 45 **Dipl. El. Ing. HTL Hans Ruedi Iselin** Haselweg 3 · 2553 Safnern/Biel Tel. +41 32 355 33 79 · Fax +41 32 355 2729

Tel. +41 32 355 33 79 · Fax +41 32 355 2729 www.istron.ch · istronag@bluewin.ch Turkey

Femsan Harmandere Mah. Tasocak Yolu No.8 · 81520 Kurtkoy – Pendik · Istanbul Tel. +90 216 482 48 44 · Fax +90 216 482 50 52 www.femsan.com · info@femsan.com

United States of America Dunkermotoren – USA

Headquarter Tel. +1 815 261 9100 · Fax +1 815 356 2760 sales.usa@dunkermotoren.com

Area US Mid West 7105 Virginia Rd, Suite 10 – 14 IL 60014 Crystal Lake Tel. +1 815 261 9100 · Fax +1 815 356 2760 sales.usa@dunkermotoren.com

Area US Southeast 19408 Makayla Lane Cornelius, NC 28031 Tel. +1 704 720 9396 · Fax +1 704 720 9397 randy.riessen@dunkermotoren.com

Area US South Central 925 South Main Street, Apt 3439 Grapevine, TX 76051 Tel. +1 817 488 2827 · Fax +1 817 442 9591 steve.bolovschak@dunkermotoren.com

Area US Northeast 18 Columbine Lane NY 11754 Kings Park Tel. +1 631 724 1701 kenneth.remis@dunkermotoren.com

Area US Westcoast 2715W 180th Street CA 90504 Torrance Tel. +1 310 323 1996 · Fax +1 310 538 9772 dee.chatteriee@dunkermotoren.com